Effect of preform shape on buckling of quasi-isotropic thermoplastic composite laminates during sheet forming
An important issue in sheet forming of continuous fibre-reinforced thermoplastic composites is the tendency of the laminates to buckle out of plane under rapid forming conditions. This paper outlines a method used to predict the stress patterns responsible for buckling, and presents experimental res...
Gespeichert in:
Veröffentlicht in: | Composites manufacturing 1995, Vol.6 (3), p.269-280 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An important issue in sheet forming of continuous fibre-reinforced thermoplastic composites is the tendency of the laminates to buckle out of plane under rapid forming conditions. This paper outlines a method used to predict the stress patterns responsible for buckling, and presents experimental results that correspond with the predictions. A finite element formulation for ideal fibre-reinforced Newtonian fluids, featuring the twin kinematic constraints of material incompressibility and fibre inextensibility, is used. A mixed penalty finite element approach is adopted, with independent interpolation of tension and velocity solution fields. An analysis model consistent with an assumption of plane stress is used. For multi-ply lay-ups, each ply is analysed individually, and average stress predictions for the laminate are obtained on this basis. A detailed comparison between numerical stress predictions and experimental buckling patterns is presented for central indentation of circular unidirectional, cross-ply and quasi-isotropic preforms. Parameters influencing the magnitude and location of peak tangential stresses include tangential fibre lengths and diaphragm/composite viscosity ratios. The effect of sheet width and shape on the instability patterns is investigated for quasi-isotropic laminates of different shapes, using both numerical and experimental techniques. |
---|---|
ISSN: | 0956-7143 |
DOI: | 10.1016/0956-7143(95)95020-Y |