Peptide-capped Au and Ag nanoparticles: Detection of heavy metals and photochemical core/shell formation

[Display omitted] We present a short peptide of only six amino acids that can be used in ambient conditions to simultaneously reduce either Au3+ or Ag+ ions, forming nanoparticles, and function as a stabilizing capping agent. At acidic pH, Hg2+ ions oxidize the silver nanoparticles and Fe2+ ions pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2023-02, Vol.631, p.66-76
Hauptverfasser: Boas, Daniel, Remennik, Sergei, Reches, Meital
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] We present a short peptide of only six amino acids that can be used in ambient conditions to simultaneously reduce either Au3+ or Ag+ ions, forming nanoparticles, and function as a stabilizing capping agent. At acidic pH, Hg2+ ions oxidize the silver nanoparticles and Fe2+ ions promote the aggregation of the gold nanoparticles. At alkaline conditions, Mn2+ ions induce the aggregation of the silver nanoparticles. Through the absorbance changes of these processes, these peptide-capped nanoparticles demonstrated a fast, selective, and sensitive pH-dependent detection system. The limit of detection of Hg2+, Mn2+, and Fe2+ was 319 nм, 184 nм, and 320 nм, respectively. Furthermore, the formed gold nanoparticles were successfully enveloped by a silver shell in a peptide-mediated photoreduction process. These bimetallic Au@Ag core/shell nanoparticles were characterized using UV–vis spectroscopy, high-resolution scanning transmission electron microscopy (HR-STEM), and energy dispersive X-ray spectroscopy (EDS). While prior studies used peptides as ligands for nanoparticles, the versatile abilities of the novel peptide presented in this study display the promising potential of using peptides for nanoparticles synthesis. This is because a single peptide can be used in a single-step one-pot synthesis to prepare and stabilize AuNPs, AgNPs, and Au@Ag core/shell nanoparticles, while also allowing to selectively probe different metal ions.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2022.10.154