Interaction between C1-microorganisms and plants: contribution to the global carbon cycle and microbial survival strategies in the phyllosphere
C1-microorganisms that can utilize C1-compounds, such as methane and methanol, are ubiquitous in nature, and contribute to drive the global carbon cycle between two major greenhouse gases, CO2 and methane. Plants emit C1-compounds from their leaves and provide habitats for C1-microorganisms. Among C...
Gespeichert in:
Veröffentlicht in: | Bioscience, biotechnology, and biochemistry biotechnology, and biochemistry, 2023-01, Vol.87 (1), p.1-6 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | C1-microorganisms that can utilize C1-compounds, such as methane and methanol, are ubiquitous in nature, and contribute to drive the global carbon cycle between two major greenhouse gases, CO2 and methane. Plants emit C1-compounds from their leaves and provide habitats for C1-microorganisms. Among C1-microorganisms, Methylobacterium spp., representative of methanol-utilizing methylotrophic bacteria, predominantly colonize the phyllosphere and are known to promote plant growth. This review summarizes the interactions between C1-mircroorganisms and plants that affect not only the fixation of C1-compounds produced by plants but also CO2 fixation by plants. We also describe our recent understanding of the survival strategy of C1-microorganisms in the phyllosphere and the application of Methylobacterium spp. to improve rice crop yield. |
---|---|
ISSN: | 1347-6947 1347-6947 |
DOI: | 10.1093/bbb/zbac176 |