Quantifying sulfidization and non-sulfidization in long-term in-situ microbial colonized As(V)-ferrihydrite coated sand columns: Insights into As mobility

Sulfide-induced reduction (sulfidization) of arsenic (As)-bearing Fe(III) (oxyhydro)oxides may lead to As mobilization in aquifer systems. However, little is known about the relative contributions of sulfidization and non-sulfidization of Fe(III) (oxyhydro)oxides reduction to As mobilization. To add...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2023-02, Vol.858 (Pt 3), p.160066-160066, Article 160066
Hauptverfasser: Zhang, Di, Ke, Tiantian, Xiu, Wei, Ren, Cui, Chen, Guangyu, Lloyd, Jonathan R., Bassil, Naji M., Richards, Laura A., Polya, David A., Wang, Guangcai, Guo, Huaming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sulfide-induced reduction (sulfidization) of arsenic (As)-bearing Fe(III) (oxyhydro)oxides may lead to As mobilization in aquifer systems. However, little is known about the relative contributions of sulfidization and non-sulfidization of Fe(III) (oxyhydro)oxides reduction to As mobilization. To address this issue, high As groundwater with low sulfide (LS) and high sulfide (HS) concentrations were pumped through As(V)-bearing ferrihydrite-coated sand columns (LS-column and HS-column, respectively) being settled within wells in the western Hetao Basin, China. Sulfidization of As(V)-bearing ferrihydrite was evidenced by the increase in dissolved Fe(II) and the presence of solid Fe(II) and elemental sulfur (S0) in both the columns. A conceptual model was built using accumulated S0 and Fe(II) produced in the columns to calculate the proportions of sulfidization-induced Fe(III) (oxyhydro)oxide reduction and non-sulfidization-induced Fe(III) (oxyhydro)oxide reduction. Fe(III) reduction via sulfidization occurred preferentially in the inlet ends (LS-column, 31 %; HS-column, 86 %), while Fe(III) reduction via non-sulfidization processes predominated in the outlet ends (LS-column, 96 %; HS-column, 86 %), and was attributed to the metabolism of genera associated with Fe(III) reduction (including Shewanella, Ferribacterium, and Desulfuromonas). Arsenic was mobilized in the columns via sulfidization and non-sulfidization processes. More As was released from the solid of the HS-column than that of the LS-column due to the higher intensity of sulfidization in the presence of higher concentrations of dissolved S(-II). Overall, this study highlights the sulfidization of As-bearing Fe(III) (oxyhydro)oxides as an important As-mobilizing pathway in complex As-Fe-S bio-hydrogeochemical networks. [Display omitted] •Sulfidization of Fe(III) oxides is highly controlled by sulfide concentration.•Shewanella, Ferribacterium and Desulfuromonas were Fe(III)-reducers for As mobility.•Sulfidization of Fe(III) oxides is critical in mobilizing As in reducing aquifers.•As, Fe, and S reduction improve As mobility in hydrobiogeochemical networks.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2022.160066