An adaptive approach to scale selection for line and edge detection
One of the standard problems of edge- and line-detecting algorithms is to determine the most appropriate size of the convolution-operator for the particular task, maximising the conflicting goals of resolution and sensitivity. Here we suggest a novel approach to scale selection, where the scale size...
Gespeichert in:
Veröffentlicht in: | Pattern recognition letters 1995, Vol.16 (7), p.667-677 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the standard problems of edge- and line-detecting algorithms is to determine the most appropriate size of the convolution-operator for the particular task, maximising the conflicting goals of resolution and sensitivity. Here we suggest a novel approach to scale selection, where the scale size varies dynamically with the convolution output: the stronger the output, the smaller the spatial scale. This principle has been applied to two types of feature-detection algorithms, and shown to perform well for both one- and two-dimensional images. |
---|---|
ISSN: | 0167-8655 1872-7344 |
DOI: | 10.1016/0167-8655(95)00017-B |