Microalgae‐Based Biohybrid Microrobot for Accelerated Diabetic Wound Healing

A variety of wound healing platforms have been proposed to alleviate the hypoxic condition and/or to modulate the immune responses for the treatment of chronic wounds in diabetes. However, these platforms with the passive diffusion of therapeutic agents through the blood clot result in the relativel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-01, Vol.19 (1), p.e2204617-n/a
Hauptverfasser: Choi, Hyunsik, Kim, Bolam, Jeong, Sang Hoon, Kim, Tae Yeon, Kim, Dong‐Pyo, Oh, You‐Kwan, Hahn, Sei Kwang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A variety of wound healing platforms have been proposed to alleviate the hypoxic condition and/or to modulate the immune responses for the treatment of chronic wounds in diabetes. However, these platforms with the passive diffusion of therapeutic agents through the blood clot result in the relatively low delivery efficiency into the deep wound site. Here, a microalgae‐based biohybrid microrobot for accelerated diabetic wound healing is developed. The biohybrid microrobot autonomously moves at velocity of 33.3 µm s−1 and generates oxygen for the alleviation of hypoxic condition. In addition, the microrobot efficiently bound with inflammatory chemokines of interleukin‐8 (IL‐8) and monocyte chemoattractant protein‐1 (MCP‐1) for modulating the immune responses. The enhanced penetration of microrobot is corroborated by measuring fibrin clots in biomimetic wound using microfluidic devices and the enhanced retention of microrobot is confirmed in the real wounded mouse skin tissue. After deposition on the chronic wound in diabetic mice without wound dressing, the wounds treated with microrobots are completely healed after 9 days with the significant decrease of inflammatory cytokines below 31% of the control level and the upregulated angiogenesis above 20 times of CD31+ cells. These results confirm the feasibility of microrobots as a next‐generation platform for diabetic wound healing. A microalgae‐based biohybrid microrobot is developed for accelerated diabetic wound healing. The wounds treated with microrobots are completely healed after 9 days with the significant decrease of inflammatory cytokines below 31% of the control level and the upregulated angiogenesis above 20 times of CD31+ cells. These results confirm the feasibility of microrobots as a next‐generation platform for diabetic wound healing.
ISSN:1613-6810
1613-6829
DOI:10.1002/smll.202204617