Reduced graphene oxide/carbon nitride composite sponge for interfacial solar water evaporation and wastewater treatment

Interfacial solar-driven steam generation has been proposed as a cost-effective green sustainable technology to alleviate the freshwater crisis. However, the desire to produce clean water from water sources containing organic contaminants is still remains a challenge due to the limitations of the tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2023-01, Vol.311, p.137163-137163, Article 137163
Hauptverfasser: Zhang, He, Li, Lele, Geng, Le, Tan, Xinyan, Hu, Yaxuan, Mu, Peng, Li, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interfacial solar-driven steam generation has been proposed as a cost-effective green sustainable technology to alleviate the freshwater crisis. However, the desire to produce clean water from water sources containing organic contaminants is still remains a challenge due to the limitations of the traditional wastewater treatment methods. Here, we constructed a g–C3N4–based composite sponge solar steam generator (rGCPP) by a simple hydrothermal reaction. Benefiting from its low cost and easy preparation, this evaporator can be expected to be a promising candidate for the alleviation of water shortages and water pollution in practical applications. By combination of the solar steam generation and the photocatalysis into the rGCPP-based interfacial solar-driven steam generation system, the resulted rGCPP-based solar steam generator performs outstanding solar absorption of 90.8%, which achieves high evaporation rate of 1.875 kg m−2 h−1 and solar-to-vapor efficiency of 81.07% under 1 sun irradiation. Meanwhile, organic pollutants in the water source can be completely removed by photocatalytic degradation and the degradation rates were measured to be 99.20% for methylene blue and 91.07% for rhodamine B, respectively. Consequently, the as-prepared composite sponge has promising applications in generating clean water and alleviating water pollution. [Display omitted] •The rGCPP-based evaporators were prepared by a facile hydrothermal self-assembly method.•The porous network framework of the rGCPP provides more active catalytic site for photocatalytic and water evaporation.•The rGCPP sponge shows high efficiency for dyes degradation and water evaporation.
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2022.137163