Ultralow-Loss Phonon Polaritons in the Isotope-Enriched α‑MoO3
α-MoO3, a natural van der Waals (vdWs) material, has received wide attention in nano-optics for supporting highly confined anisotropic phonon polaritons (PhPs) from the mid-infrared to the terahertz region, which opens a new route for manipulating light at the nanoscale. However, its optical loss hi...
Gespeichert in:
Veröffentlicht in: | Nano letters 2022-12, Vol.22 (24), p.10208-10215 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | α-MoO3, a natural van der Waals (vdWs) material, has received wide attention in nano-optics for supporting highly confined anisotropic phonon polaritons (PhPs) from the mid-infrared to the terahertz region, which opens a new route for manipulating light at the nanoscale. However, its optical loss hinders light manipulation with high efficiency. This work demonstrates that the isotope-enriched Mo element enables ultralow-loss PhPs in the α-MoO3. Raman spectra reveal that the isotope-enriched Mo element in the α-MoO3 allows different optical phonon frequencies by efficiently altering the Reststrahlen band’s dispersion. The Mo isotope-enriched α-MoO3 significantly reduces the PhPs’ optical loss due to efficient optical coherence, which enhances the propagation length revealed by infrared nanoimaging. These findings suggest that the isotope-enriched α-MoO3 is a new feasible 2D material with an ultralow optical loss for possible high-performance integrated photonics and quantum optics devices. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.2c03742 |