Review of oil spill remote sensing

Airborne and space-borne sensors are reviewed and evaluated in terms of their usefulness in responding to oil spills. Recent developments and trends in sensor technology are illustrated with specific examples. The discussion of the sensors is divided into two main categories, namely active and passi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Spill Science and Technology Bulletin 1997, Vol.4 (4), p.199-208
Hauptverfasser: Fingas, Mervin F., Brown, Carl E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Airborne and space-borne sensors are reviewed and evaluated in terms of their usefulness in responding to oil spills. Recent developments and trends in sensor technology are illustrated with specific examples. The discussion of the sensors is divided into two main categories, namely active and passive. Active sensors are those that provide their own source of illumination or excitation, whereas passive sensors rely on illumination from a secondary source. A common passive sensor is an infrared camera or an IR/UV (infrared/ultraviolet) system. The inherent weaknesses include the inability to discriminate oil on beaches, among seaweeds or debris. Among active sensors, the laser fluorosensor is a most useful instrument because of its unique capability to identify oil on backgrounds that include water, soil, ice and snow. It is the only sensor that can positively discriminate oil on most backgrounds. Disadvantages include the large size, weight and high cost. Radar offers the only potential for large area searches and foul weather remote sensing. Radar is costly, requires a dedicated aircraft, and is prone to many interferences. Equipment that measures relative slick thickness is still under development. Passive microwave has been studied for several years, but many commercial instruments lack sufficient spatial resolution to be practical, operational instruments. A laser-acoustic instrument, which provides the only technology to measure absolute oil thickness, is under development. Equipment operating in the visible region of the spectrum, such as cameras and scanners, is useful for documentation or providing a basis for the overlay of other data. It is not useful beyond this because oil shows no spectral characteristics in the visible region which can be used to discriminate oil.
ISSN:1353-2561
DOI:10.1016/S1353-2561(98)00023-1