Nonvolatile n‑Type Doping and Metallic State in Multilayer-MoS2 Induced by Hydrogenation Using Ionic-Liquid Gating
Manipulation of the carrier density of layered transition-metal dichalcogenides (TMDs) is of fundamental significance for a wide range of electronic and optoelectronic applications. Herein, we applied the ionic-liquid-gating (ILG) method to inject the smallest ions, H+, into layered MoS2 to manipula...
Gespeichert in:
Veröffentlicht in: | Nano letters 2022-11, Vol.22 (22), p.8957-8965 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Manipulation of the carrier density of layered transition-metal dichalcogenides (TMDs) is of fundamental significance for a wide range of electronic and optoelectronic applications. Herein, we applied the ionic-liquid-gating (ILG) method to inject the smallest ions, H+, into layered MoS2 to manipulate its carrier concentration. The measurements demonstrate that the injection of H+ realizes a nonvolatile n-type doping and metallic state in multilayer-MoS2 with a concentration of injection electron of ∼1.08 × 1013 cm–2 but has no effect on monolayer-MoS2, which clearly reveals that the H+ is injected into the interlayer of MoS2, not in the crystal lattice. The H+-injected multilayer-MoS2 was then used as the contact electrodes of a monolayer-MoS2 field effect transistor to improve the contact quality, and its performance has been enhanced. Our work deepens the understanding of the ILG technology and extends its application in TMDs. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.2c03159 |