Dynamical invariant formalism of shortcuts to adiabaticity
We give a pedagogical introduction to dynamical invariant formalism of shortcuts to adiabaticity. For a given operator form of the Hamiltonian with undetermined coefficients, the dynamical invariant is introduced to design the coefficients. We discuss how the method allows us to mimic adiabatic dyna...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2022-12, Vol.380 (2239), p.20220301-20220301 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20220301 |
---|---|
container_issue | 2239 |
container_start_page | 20220301 |
container_title | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences |
container_volume | 380 |
creator | Takahashi, Kazutaka |
description | We give a pedagogical introduction to dynamical invariant formalism of shortcuts to adiabaticity. For a given operator form of the Hamiltonian with undetermined coefficients, the dynamical invariant is introduced to design the coefficients. We discuss how the method allows us to mimic adiabatic dynamics and describe a relation to the counterdiabatic formalism. The equation for the dynamical invariant takes a familiar form and is often used in various fields of physics. We introduce examples of Lax pair, quantum brachistochrone and flow equation.
This article is part of the theme issue ‘Shortcuts to adiabaticity: theoretical, experimental and interdisciplinary perspectives’. |
doi_str_mv | 10.1098/rsta.2022.0301 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2733203847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2733203847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-93f733702338e73e19ae9ab6a32e7d86d278fdfa043cf543b02a74d0021321273</originalsourceid><addsrcrecordid>eNot0D9PwzAQhnELgUQprMwZWRLOd2mcsKHyV6rEAhKbdU1sYZTExXaQ-u1pVKa74dE7_IS4llBIaOrbEBMXCIgFEMgTsZClkjk2FZ4efqrKfAX0eS4uYvwGkLJa4ULcPexHHlzLfebGXw6Ox5RZHwbuXRwyb7P45UNqpxSz5DPuHG85udal_aU4s9xHc_V_l-Lj6fF9_ZJv3p5f1_ebvKUaU96QVUQKkKg2ioxs2DS8rZjQqK6uOlS17SxDSa1dlbQFZFV2ACgJJSpaipvj7i74n8nEpAcXW9P3PBo_RX1ICIHqck6LY9oGH2MwVu-CGzjstQQ9I-kZSc9IekaiP9yfWk4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2733203847</pqid></control><display><type>article</type><title>Dynamical invariant formalism of shortcuts to adiabaticity</title><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Takahashi, Kazutaka</creator><creatorcontrib>Takahashi, Kazutaka</creatorcontrib><description>We give a pedagogical introduction to dynamical invariant formalism of shortcuts to adiabaticity. For a given operator form of the Hamiltonian with undetermined coefficients, the dynamical invariant is introduced to design the coefficients. We discuss how the method allows us to mimic adiabatic dynamics and describe a relation to the counterdiabatic formalism. The equation for the dynamical invariant takes a familiar form and is often used in various fields of physics. We introduce examples of Lax pair, quantum brachistochrone and flow equation.
This article is part of the theme issue ‘Shortcuts to adiabaticity: theoretical, experimental and interdisciplinary perspectives’.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2022.0301</identifier><language>eng</language><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2022-12, Vol.380 (2239), p.20220301-20220301</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-93f733702338e73e19ae9ab6a32e7d86d278fdfa043cf543b02a74d0021321273</citedby><cites>FETCH-LOGICAL-c382t-93f733702338e73e19ae9ab6a32e7d86d278fdfa043cf543b02a74d0021321273</cites><orcidid>0000-0001-7321-2571</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Takahashi, Kazutaka</creatorcontrib><title>Dynamical invariant formalism of shortcuts to adiabaticity</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><description>We give a pedagogical introduction to dynamical invariant formalism of shortcuts to adiabaticity. For a given operator form of the Hamiltonian with undetermined coefficients, the dynamical invariant is introduced to design the coefficients. We discuss how the method allows us to mimic adiabatic dynamics and describe a relation to the counterdiabatic formalism. The equation for the dynamical invariant takes a familiar form and is often used in various fields of physics. We introduce examples of Lax pair, quantum brachistochrone and flow equation.
This article is part of the theme issue ‘Shortcuts to adiabaticity: theoretical, experimental and interdisciplinary perspectives’.</description><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNot0D9PwzAQhnELgUQprMwZWRLOd2mcsKHyV6rEAhKbdU1sYZTExXaQ-u1pVKa74dE7_IS4llBIaOrbEBMXCIgFEMgTsZClkjk2FZ4efqrKfAX0eS4uYvwGkLJa4ULcPexHHlzLfebGXw6Ox5RZHwbuXRwyb7P45UNqpxSz5DPuHG85udal_aU4s9xHc_V_l-Lj6fF9_ZJv3p5f1_ebvKUaU96QVUQKkKg2ioxs2DS8rZjQqK6uOlS17SxDSa1dlbQFZFV2ACgJJSpaipvj7i74n8nEpAcXW9P3PBo_RX1ICIHqck6LY9oGH2MwVu-CGzjstQQ9I-kZSc9IekaiP9yfWk4</recordid><startdate>20221226</startdate><enddate>20221226</enddate><creator>Takahashi, Kazutaka</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7321-2571</orcidid></search><sort><creationdate>20221226</creationdate><title>Dynamical invariant formalism of shortcuts to adiabaticity</title><author>Takahashi, Kazutaka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-93f733702338e73e19ae9ab6a32e7d86d278fdfa043cf543b02a74d0021321273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takahashi, Kazutaka</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takahashi, Kazutaka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamical invariant formalism of shortcuts to adiabaticity</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><date>2022-12-26</date><risdate>2022</risdate><volume>380</volume><issue>2239</issue><spage>20220301</spage><epage>20220301</epage><pages>20220301-20220301</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>We give a pedagogical introduction to dynamical invariant formalism of shortcuts to adiabaticity. For a given operator form of the Hamiltonian with undetermined coefficients, the dynamical invariant is introduced to design the coefficients. We discuss how the method allows us to mimic adiabatic dynamics and describe a relation to the counterdiabatic formalism. The equation for the dynamical invariant takes a familiar form and is often used in various fields of physics. We introduce examples of Lax pair, quantum brachistochrone and flow equation.
This article is part of the theme issue ‘Shortcuts to adiabaticity: theoretical, experimental and interdisciplinary perspectives’.</abstract><doi>10.1098/rsta.2022.0301</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7321-2571</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-503X |
ispartof | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2022-12, Vol.380 (2239), p.20220301-20220301 |
issn | 1364-503X 1471-2962 |
language | eng |
recordid | cdi_proquest_miscellaneous_2733203847 |
source | Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
title | Dynamical invariant formalism of shortcuts to adiabaticity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A13%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamical%20invariant%20formalism%20of%20shortcuts%20to%20adiabaticity&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Takahashi,%20Kazutaka&rft.date=2022-12-26&rft.volume=380&rft.issue=2239&rft.spage=20220301&rft.epage=20220301&rft.pages=20220301-20220301&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2022.0301&rft_dat=%3Cproquest_cross%3E2733203847%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2733203847&rft_id=info:pmid/&rfr_iscdi=true |