Dynamical invariant formalism of shortcuts to adiabaticity

We give a pedagogical introduction to dynamical invariant formalism of shortcuts to adiabaticity. For a given operator form of the Hamiltonian with undetermined coefficients, the dynamical invariant is introduced to design the coefficients. We discuss how the method allows us to mimic adiabatic dyna...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2022-12, Vol.380 (2239), p.20220301-20220301
1. Verfasser: Takahashi, Kazutaka
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20220301
container_issue 2239
container_start_page 20220301
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 380
creator Takahashi, Kazutaka
description We give a pedagogical introduction to dynamical invariant formalism of shortcuts to adiabaticity. For a given operator form of the Hamiltonian with undetermined coefficients, the dynamical invariant is introduced to design the coefficients. We discuss how the method allows us to mimic adiabatic dynamics and describe a relation to the counterdiabatic formalism. The equation for the dynamical invariant takes a familiar form and is often used in various fields of physics. We introduce examples of Lax pair, quantum brachistochrone and flow equation. This article is part of the theme issue ‘Shortcuts to adiabaticity: theoretical, experimental and interdisciplinary perspectives’.
doi_str_mv 10.1098/rsta.2022.0301
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2733203847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2733203847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-93f733702338e73e19ae9ab6a32e7d86d278fdfa043cf543b02a74d0021321273</originalsourceid><addsrcrecordid>eNot0D9PwzAQhnELgUQprMwZWRLOd2mcsKHyV6rEAhKbdU1sYZTExXaQ-u1pVKa74dE7_IS4llBIaOrbEBMXCIgFEMgTsZClkjk2FZ4efqrKfAX0eS4uYvwGkLJa4ULcPexHHlzLfebGXw6Ox5RZHwbuXRwyb7P45UNqpxSz5DPuHG85udal_aU4s9xHc_V_l-Lj6fF9_ZJv3p5f1_ebvKUaU96QVUQKkKg2ioxs2DS8rZjQqK6uOlS17SxDSa1dlbQFZFV2ACgJJSpaipvj7i74n8nEpAcXW9P3PBo_RX1ICIHqck6LY9oGH2MwVu-CGzjstQQ9I-kZSc9IekaiP9yfWk4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2733203847</pqid></control><display><type>article</type><title>Dynamical invariant formalism of shortcuts to adiabaticity</title><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Takahashi, Kazutaka</creator><creatorcontrib>Takahashi, Kazutaka</creatorcontrib><description>We give a pedagogical introduction to dynamical invariant formalism of shortcuts to adiabaticity. For a given operator form of the Hamiltonian with undetermined coefficients, the dynamical invariant is introduced to design the coefficients. We discuss how the method allows us to mimic adiabatic dynamics and describe a relation to the counterdiabatic formalism. The equation for the dynamical invariant takes a familiar form and is often used in various fields of physics. We introduce examples of Lax pair, quantum brachistochrone and flow equation. This article is part of the theme issue ‘Shortcuts to adiabaticity: theoretical, experimental and interdisciplinary perspectives’.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2022.0301</identifier><language>eng</language><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2022-12, Vol.380 (2239), p.20220301-20220301</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-93f733702338e73e19ae9ab6a32e7d86d278fdfa043cf543b02a74d0021321273</citedby><cites>FETCH-LOGICAL-c382t-93f733702338e73e19ae9ab6a32e7d86d278fdfa043cf543b02a74d0021321273</cites><orcidid>0000-0001-7321-2571</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Takahashi, Kazutaka</creatorcontrib><title>Dynamical invariant formalism of shortcuts to adiabaticity</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><description>We give a pedagogical introduction to dynamical invariant formalism of shortcuts to adiabaticity. For a given operator form of the Hamiltonian with undetermined coefficients, the dynamical invariant is introduced to design the coefficients. We discuss how the method allows us to mimic adiabatic dynamics and describe a relation to the counterdiabatic formalism. The equation for the dynamical invariant takes a familiar form and is often used in various fields of physics. We introduce examples of Lax pair, quantum brachistochrone and flow equation. This article is part of the theme issue ‘Shortcuts to adiabaticity: theoretical, experimental and interdisciplinary perspectives’.</description><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNot0D9PwzAQhnELgUQprMwZWRLOd2mcsKHyV6rEAhKbdU1sYZTExXaQ-u1pVKa74dE7_IS4llBIaOrbEBMXCIgFEMgTsZClkjk2FZ4efqrKfAX0eS4uYvwGkLJa4ULcPexHHlzLfebGXw6Ox5RZHwbuXRwyb7P45UNqpxSz5DPuHG85udal_aU4s9xHc_V_l-Lj6fF9_ZJv3p5f1_ebvKUaU96QVUQKkKg2ioxs2DS8rZjQqK6uOlS17SxDSa1dlbQFZFV2ACgJJSpaipvj7i74n8nEpAcXW9P3PBo_RX1ICIHqck6LY9oGH2MwVu-CGzjstQQ9I-kZSc9IekaiP9yfWk4</recordid><startdate>20221226</startdate><enddate>20221226</enddate><creator>Takahashi, Kazutaka</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7321-2571</orcidid></search><sort><creationdate>20221226</creationdate><title>Dynamical invariant formalism of shortcuts to adiabaticity</title><author>Takahashi, Kazutaka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-93f733702338e73e19ae9ab6a32e7d86d278fdfa043cf543b02a74d0021321273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takahashi, Kazutaka</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takahashi, Kazutaka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamical invariant formalism of shortcuts to adiabaticity</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><date>2022-12-26</date><risdate>2022</risdate><volume>380</volume><issue>2239</issue><spage>20220301</spage><epage>20220301</epage><pages>20220301-20220301</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>We give a pedagogical introduction to dynamical invariant formalism of shortcuts to adiabaticity. For a given operator form of the Hamiltonian with undetermined coefficients, the dynamical invariant is introduced to design the coefficients. We discuss how the method allows us to mimic adiabatic dynamics and describe a relation to the counterdiabatic formalism. The equation for the dynamical invariant takes a familiar form and is often used in various fields of physics. We introduce examples of Lax pair, quantum brachistochrone and flow equation. This article is part of the theme issue ‘Shortcuts to adiabaticity: theoretical, experimental and interdisciplinary perspectives’.</abstract><doi>10.1098/rsta.2022.0301</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7321-2571</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2022-12, Vol.380 (2239), p.20220301-20220301
issn 1364-503X
1471-2962
language eng
recordid cdi_proquest_miscellaneous_2733203847
source Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
title Dynamical invariant formalism of shortcuts to adiabaticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A13%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamical%20invariant%20formalism%20of%20shortcuts%20to%20adiabaticity&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Takahashi,%20Kazutaka&rft.date=2022-12-26&rft.volume=380&rft.issue=2239&rft.spage=20220301&rft.epage=20220301&rft.pages=20220301-20220301&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2022.0301&rft_dat=%3Cproquest_cross%3E2733203847%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2733203847&rft_id=info:pmid/&rfr_iscdi=true