Dynamical invariant formalism of shortcuts to adiabaticity

We give a pedagogical introduction to dynamical invariant formalism of shortcuts to adiabaticity. For a given operator form of the Hamiltonian with undetermined coefficients, the dynamical invariant is introduced to design the coefficients. We discuss how the method allows us to mimic adiabatic dyna...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2022-12, Vol.380 (2239), p.20220301-20220301
1. Verfasser: Takahashi, Kazutaka
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a pedagogical introduction to dynamical invariant formalism of shortcuts to adiabaticity. For a given operator form of the Hamiltonian with undetermined coefficients, the dynamical invariant is introduced to design the coefficients. We discuss how the method allows us to mimic adiabatic dynamics and describe a relation to the counterdiabatic formalism. The equation for the dynamical invariant takes a familiar form and is often used in various fields of physics. We introduce examples of Lax pair, quantum brachistochrone and flow equation. This article is part of the theme issue ‘Shortcuts to adiabaticity: theoretical, experimental and interdisciplinary perspectives’.
ISSN:1364-503X
1471-2962
DOI:10.1098/rsta.2022.0301