Shape Morphing Directed by Spatially Encoded, Dually Responsive Liquid Crystalline Elastomer Micro‐Actuators
Liquid crystalline elastomers (LCEs) with intrinsic molecular anisotropy can be programmed to morph shapes under external stimuli. However, it is difficult to program the position and orientation of individual mesogenic units separately and locally, whether in‐plane or out‐of‐plane, since each mesog...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2023-02, Vol.35 (5), p.e2208613-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Liquid crystalline elastomers (LCEs) with intrinsic molecular anisotropy can be programmed to morph shapes under external stimuli. However, it is difficult to program the position and orientation of individual mesogenic units separately and locally, whether in‐plane or out‐of‐plane, since each mesogen is linked to adjacent ones through the covalently bonded polymer chains. Here, dually responsive, spindle‐shaped micro‐actuators are synthesized from LCE composites, which can reorient under a magnetic field and change the shape upon heating. When the discrete micro‐actuators are embedded in a conventional and nonresponsive elastomer with programmed height distribution and in‐plane orientation in local regions, robust and complex shape morphing induced by the cooperative actuations of the locally distributed micro‐actuators, which corroborates with finite element analysis, are shown. The spatial encoding of discrete micro‐actuators in a nonresponsive matrix allows to decouple the actuators and the matrix, broadening the material palette to program local and global responses to stimuli for applications including soft robotics, smart wearables, and sensors.
Shape morphing from nonresponsive elastomer films can be preprogrammed by spatially embedding anisotropic shape‐changing micro‐actuators with certain orientations and height distributions, offering a robust pathway to simultaneously control in‐plane and out‐of‐plane bending. This work will broaden the material palette for shape‐morphing‐based applications such as soft robotics, smart wearables, displays, and sensors. |
---|---|
ISSN: | 0935-9648 1521-4095 |
DOI: | 10.1002/adma.202208613 |