Resveratrol improves diabetic cardiomyopathy by preventing asymmetric dimethylarginine-caused peroxisome proliferator-activated receptor-γ coactivator-1α acetylation

Cardiac protection of resveratrol is related to the improvement of mitochondrial function through sirtuin1 (SIRT1) activation and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) deacetylation. Asymmetric dimethylarginine (ADMA) as an endogenous inhibitor of nitric oxide synthase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of pharmacology 2022-12, Vol.936, p.175342-175342, Article 175342
Hauptverfasser: Fang, Wei-Jin, Li, Xiao-Mei, Zhou, Xin-Ke, Xiong, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cardiac protection of resveratrol is related to the improvement of mitochondrial function through sirtuin1 (SIRT1) activation and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) deacetylation. Asymmetric dimethylarginine (ADMA) as an endogenous inhibitor of nitric oxide synthases is associated with diabetic cardiovascular complications and has a cross-talk with lysine acetylation. This study was to determine whether resveratrol reverses ADMA's pathogenic role in diabetic cardiomyopathy and elucidate the underlying mechanisms in type 2 diabetic (T2DM) rats and cardiomyocytes. T2DM Rats were induced by high-fat diet plus small-dose streptozotocin injection (35 mg/kg). Resveratrol was given by gavage (50 mg/kg/d) to some rats for 16w. Cardiac function was measured by echocardiography, and PGC-1α acetylation was detected by immunoprecipitation. Mitochondrial DNA and ATP contents were analyzed to evaluate mitochondrial biogenesis and function. Endogenous ADMA accumulation and its signal disorders were associated with cardiac and mitochondrial dysfunctions in accompany with increased PGC-1α acetylation and decreased PGC-1α expression in the myocardium of T2DM rats compared with control rats. Resveratrol treatment attenuated ADMA accumulation, cardiac and mitochondrial dysfunctions in parallel with reversing altered PGC-1α expression and acetylation in the myocardium of T2DM rats. Exogenous ADMA not only reproduced mitochondrial dysfunction and cardiac hypertrophy but also reduced PGC-1α expression and enhanced PGC-1α acetylation in accompany of down-regulating SIRT1 and up-regulating acetyltransferase expression, all of which could be prevented by resveratrol pretreatment in cardiomyocytes. These results indicate that ADMA promotes PGC-1α acetylation as a potential therapeutic target for resveratrol of management diabetic cardiomyopathy in T2DM rats. [Display omitted]
ISSN:0014-2999
1879-0712
DOI:10.1016/j.ejphar.2022.175342