Ultralow‐Power Vertical Transistors for Multilevel Decoding Modes

Organic field‐effect transistors with parallel transmission and learning functions are of interest in the development of brain‐inspired neuromorphic computing. However, the poor performance and high power consumption are the two main issues limiting their practical applications. Herein, an ultralow‐...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2023-01, Vol.35 (3), p.e2208600-n/a
Hauptverfasser: Zhang, Qing, Li, Enlong, Wang, Yongshuai, Gao, Changsong, Wang, Congyong, Li, Lin, Geng, Dechao, Chen, Huipeng, Chen, Wei, Hu, Wenping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Organic field‐effect transistors with parallel transmission and learning functions are of interest in the development of brain‐inspired neuromorphic computing. However, the poor performance and high power consumption are the two main issues limiting their practical applications. Herein, an ultralow‐power vertical transistor is demonstrated based on transition‐metal carbides/nitrides (MXene) and organic single crystal. The transistor exhibits a high JON of 16.6 mA cm−2 and a high JON/JOFF ratio of 9.12 × 105 under an ultralow working voltage of −1 mV. Furthermore, it can successfully simulate the functions of biological synapse under electrical modulation along with consuming only 8.7 aJ of power per spike. It also permits multilevel information decoding modes with a significant gap between the readable time of professionals and nonprofessionals, producing a high signal‐to‐noise ratio up to 114.15 dB. This work encourages the use of vertical transistors and organic single crystal in decoding information and advances the development of low‐power neuromorphic systems. Transition‐metal carbides/nitrides (MXene)‐organic single crystal vertical transistor exhibits a fast switching characteristic under an ultralow operating voltage of −1 mV, meanwhile consumes only 8.7 aJ per spike when working as an electrical synaptic transistor.
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.202208600