Starting up anammox system with high efficiency nitrogen removal at low temperatures: Performance optimization, sludge characterization and microbial community analysis

Anaerobic ammonia oxidation (anammox) has potential advantages for nitrogen removal when operating at medium temperatures, but the increased operation costs of heating limit its application. It would be advantageous to start and operate anammox at low temperatures, the feasibility of which was studi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental management 2023-01, Vol.325, p.116542-116542, Article 116542
Hauptverfasser: Peng, Liurui, Shi, Rui, Tao, Youqi, Huang, Qian, Yang, Maoyuan, He, Yuecheng, Xu, Wenlai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Anaerobic ammonia oxidation (anammox) has potential advantages for nitrogen removal when operating at medium temperatures, but the increased operation costs of heating limit its application. It would be advantageous to start and operate anammox at low temperatures, the feasibility of which was studied here on a lab scale. Two identical expanded granular sludge bed (EGSB) reactors were inoculated at 35 ± 1 °C (Amed) and 15 ± 3 °C (Alow). Results showed that anammox was successful after 138 d for Alow, only 7 d longer than Amed. Stable operation to 194 d in Alow, the nitrogen loading rate (NLR) increased to 1.01 kg m−3·d−1, giving a high nitrogen removal efficiency (NRE) of 85%, which was only slightly lower than that of Amed (90%). More extracellular polymeric substance (EPS) was produced by the microbes of Alow compared to Amed, which prevented anaerobic ammonia oxidizing bacteria (AnAOB) against low temperature stress. Microbial community revealed presence of Candidatus Jettenia in Amed with relative abundance 7.4%, while the “cold-tolerant” Candidatus Kuenenia with 4% was the dominant anammox bacteria in Alow. The anammox granules adapted well to low temperatures and demonstrated high efficiency in anammox process without heating. Therefore, constructing an energy-saving and cost-effective anammox system in high latitudes or high altitudes can be considered. [Display omitted] •The anammox system achieved a high NRE of 85% at low temperatures.•EPS relieved the low-temperature shock.•The cold-tolerant Candidatus Kuenenia was enriched at low temperatures.•Interspecies cooperation of microbes promoted efficient nitrogen removal.
ISSN:0301-4797
1095-8630
DOI:10.1016/j.jenvman.2022.116542