Estimating the Number of Factors in Exploratory Factor Analysis via Out-of-Sample Prediction Errors
Exploratory factor analysis (EFA) is one of the most popular statistical models in psychological science. A key problem in EFA is to estimate the number of factors. In this article, we present a new method for estimating the number of factors based on minimizing the out-of-sample prediction error of...
Gespeichert in:
Veröffentlicht in: | Psychological methods 2024-02, Vol.29 (1), p.48-64 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 64 |
---|---|
container_issue | 1 |
container_start_page | 48 |
container_title | Psychological methods |
container_volume | 29 |
creator | Haslbeck, Jonas M. B. van Bork, Riet |
description | Exploratory factor analysis (EFA) is one of the most popular statistical models in psychological science. A key problem in EFA is to estimate the number of factors. In this article, we present a new method for estimating the number of factors based on minimizing the out-of-sample prediction error of candidate factor models. We show in an extensive simulation study that our method slightly outperforms existing methods, including parallel analysis, Bayesian information criterion (BIC), Akaike information criterion (AIC), root mean squared error of approximation (RMSEA), and exploratory graph analysis. In addition, we show that, among the best performing methods, our method is the one that is most robust across different specifications of the true factor model. We provide an implementation of our method in the R-package fspe.
Translational Abstract
Exploratory factor analysis (EFA) is one of the most popular statistical models in psychological science. A key problem in EFA is to estimate the number of factors. In this article, we present a new method for estimating the number of factors based on minimizing the out-of-sample prediction error of candidate factor models. We show in an extensive simulation study that our method slightly outperforms existing methods and is more robust across different specifications of the true factor model than other high performing methods. We provide an implementation of our method in the R-package fspe. |
doi_str_mv | 10.1037/met0000528 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2731717587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731717587</sourcerecordid><originalsourceid>FETCH-LOGICAL-a350t-a77acb06d216f98e97442031f795244d72de4284e44737facbae34436bff321f3</originalsourceid><addsrcrecordid>eNpdkF1LHDEUhoNU6rrtjT9AAr0pwmi-dpK5XGStgqhgC70L2cxJm2VmMiaZ0v33RnZVMDcn5_CcB86L0Akl55RwedFDJuUtmDpAM9rwpqKi5p_KnyhWNar5fYSOU9oQQgVX4jM64jVndc3FDNlVyr432Q9_cP4L-G7q1xBxcPjK2Bxiwn7Aq_9jF6Ip7XY_xsvBdNvkE_7nDb6fchVc9Wj6sQP8EKH1NvtQFmMsii_o0Jkuwdd9naNfV6ufl9fV7f2Pm8vlbWX4guTKSGnsmtQto7VrFDRSCEY4dbJZMCFayVoQTAkQQnLpCmuAC8HrtXOcUcfn6PvOO8bwNEHKuvfJQteZAcKUNJOcSioXShb02wd0E6ZYbtpRQhGmVKHOdpSNIaUITo-xhBW3mhL9Er1-j77Ap3vltO6hfUNfs363mdHoMW2tidnbDpKdYoQhv8g0azTVQvFnjmSNaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731480288</pqid></control><display><type>article</type><title>Estimating the Number of Factors in Exploratory Factor Analysis via Out-of-Sample Prediction Errors</title><source>APA PsycARTICLES</source><source>MEDLINE</source><creator>Haslbeck, Jonas M. B. ; van Bork, Riet</creator><contributor>Steinley, Douglas</contributor><creatorcontrib>Haslbeck, Jonas M. B. ; van Bork, Riet ; Steinley, Douglas</creatorcontrib><description>Exploratory factor analysis (EFA) is one of the most popular statistical models in psychological science. A key problem in EFA is to estimate the number of factors. In this article, we present a new method for estimating the number of factors based on minimizing the out-of-sample prediction error of candidate factor models. We show in an extensive simulation study that our method slightly outperforms existing methods, including parallel analysis, Bayesian information criterion (BIC), Akaike information criterion (AIC), root mean squared error of approximation (RMSEA), and exploratory graph analysis. In addition, we show that, among the best performing methods, our method is the one that is most robust across different specifications of the true factor model. We provide an implementation of our method in the R-package fspe.
Translational Abstract
Exploratory factor analysis (EFA) is one of the most popular statistical models in psychological science. A key problem in EFA is to estimate the number of factors. In this article, we present a new method for estimating the number of factors based on minimizing the out-of-sample prediction error of candidate factor models. We show in an extensive simulation study that our method slightly outperforms existing methods and is more robust across different specifications of the true factor model than other high performing methods. We provide an implementation of our method in the R-package fspe.</description><identifier>ISSN: 1082-989X</identifier><identifier>EISSN: 1939-1463</identifier><identifier>DOI: 10.1037/met0000528</identifier><identifier>PMID: 36326634</identifier><language>eng</language><publisher>United States: American Psychological Association</publisher><subject>Bayes Theorem ; Computer Simulation ; Exploratory Factor Analysis ; Factor Analysis, Statistical ; Humans ; Models, Statistical ; Prediction Errors</subject><ispartof>Psychological methods, 2024-02, Vol.29 (1), p.48-64</ispartof><rights>2022 American Psychological Association</rights><rights>2022, American Psychological Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a350t-a77acb06d216f98e97442031f795244d72de4284e44737facbae34436bff321f3</citedby><orcidid>0000-0001-9096-7837 ; 0000-0002-4772-8862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36326634$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Steinley, Douglas</contributor><creatorcontrib>Haslbeck, Jonas M. B.</creatorcontrib><creatorcontrib>van Bork, Riet</creatorcontrib><title>Estimating the Number of Factors in Exploratory Factor Analysis via Out-of-Sample Prediction Errors</title><title>Psychological methods</title><addtitle>Psychol Methods</addtitle><description>Exploratory factor analysis (EFA) is one of the most popular statistical models in psychological science. A key problem in EFA is to estimate the number of factors. In this article, we present a new method for estimating the number of factors based on minimizing the out-of-sample prediction error of candidate factor models. We show in an extensive simulation study that our method slightly outperforms existing methods, including parallel analysis, Bayesian information criterion (BIC), Akaike information criterion (AIC), root mean squared error of approximation (RMSEA), and exploratory graph analysis. In addition, we show that, among the best performing methods, our method is the one that is most robust across different specifications of the true factor model. We provide an implementation of our method in the R-package fspe.
Translational Abstract
Exploratory factor analysis (EFA) is one of the most popular statistical models in psychological science. A key problem in EFA is to estimate the number of factors. In this article, we present a new method for estimating the number of factors based on minimizing the out-of-sample prediction error of candidate factor models. We show in an extensive simulation study that our method slightly outperforms existing methods and is more robust across different specifications of the true factor model than other high performing methods. We provide an implementation of our method in the R-package fspe.</description><subject>Bayes Theorem</subject><subject>Computer Simulation</subject><subject>Exploratory Factor Analysis</subject><subject>Factor Analysis, Statistical</subject><subject>Humans</subject><subject>Models, Statistical</subject><subject>Prediction Errors</subject><issn>1082-989X</issn><issn>1939-1463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkF1LHDEUhoNU6rrtjT9AAr0pwmi-dpK5XGStgqhgC70L2cxJm2VmMiaZ0v33RnZVMDcn5_CcB86L0Akl55RwedFDJuUtmDpAM9rwpqKi5p_KnyhWNar5fYSOU9oQQgVX4jM64jVndc3FDNlVyr432Q9_cP4L-G7q1xBxcPjK2Bxiwn7Aq_9jF6Ip7XY_xsvBdNvkE_7nDb6fchVc9Wj6sQP8EKH1NvtQFmMsii_o0Jkuwdd9naNfV6ufl9fV7f2Pm8vlbWX4guTKSGnsmtQto7VrFDRSCEY4dbJZMCFayVoQTAkQQnLpCmuAC8HrtXOcUcfn6PvOO8bwNEHKuvfJQteZAcKUNJOcSioXShb02wd0E6ZYbtpRQhGmVKHOdpSNIaUITo-xhBW3mhL9Er1-j77Ap3vltO6hfUNfs363mdHoMW2tidnbDpKdYoQhv8g0azTVQvFnjmSNaQ</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Haslbeck, Jonas M. B.</creator><creator>van Bork, Riet</creator><general>American Psychological Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7RZ</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PSYQQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9096-7837</orcidid><orcidid>https://orcid.org/0000-0002-4772-8862</orcidid></search><sort><creationdate>20240201</creationdate><title>Estimating the Number of Factors in Exploratory Factor Analysis via Out-of-Sample Prediction Errors</title><author>Haslbeck, Jonas M. B. ; van Bork, Riet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a350t-a77acb06d216f98e97442031f795244d72de4284e44737facbae34436bff321f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bayes Theorem</topic><topic>Computer Simulation</topic><topic>Exploratory Factor Analysis</topic><topic>Factor Analysis, Statistical</topic><topic>Humans</topic><topic>Models, Statistical</topic><topic>Prediction Errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haslbeck, Jonas M. B.</creatorcontrib><creatorcontrib>van Bork, Riet</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>APA PsycArticles®</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Psychology</collection><collection>MEDLINE - Academic</collection><jtitle>Psychological methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haslbeck, Jonas M. B.</au><au>van Bork, Riet</au><au>Steinley, Douglas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating the Number of Factors in Exploratory Factor Analysis via Out-of-Sample Prediction Errors</atitle><jtitle>Psychological methods</jtitle><addtitle>Psychol Methods</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>29</volume><issue>1</issue><spage>48</spage><epage>64</epage><pages>48-64</pages><issn>1082-989X</issn><eissn>1939-1463</eissn><abstract>Exploratory factor analysis (EFA) is one of the most popular statistical models in psychological science. A key problem in EFA is to estimate the number of factors. In this article, we present a new method for estimating the number of factors based on minimizing the out-of-sample prediction error of candidate factor models. We show in an extensive simulation study that our method slightly outperforms existing methods, including parallel analysis, Bayesian information criterion (BIC), Akaike information criterion (AIC), root mean squared error of approximation (RMSEA), and exploratory graph analysis. In addition, we show that, among the best performing methods, our method is the one that is most robust across different specifications of the true factor model. We provide an implementation of our method in the R-package fspe.
Translational Abstract
Exploratory factor analysis (EFA) is one of the most popular statistical models in psychological science. A key problem in EFA is to estimate the number of factors. In this article, we present a new method for estimating the number of factors based on minimizing the out-of-sample prediction error of candidate factor models. We show in an extensive simulation study that our method slightly outperforms existing methods and is more robust across different specifications of the true factor model than other high performing methods. We provide an implementation of our method in the R-package fspe.</abstract><cop>United States</cop><pub>American Psychological Association</pub><pmid>36326634</pmid><doi>10.1037/met0000528</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-9096-7837</orcidid><orcidid>https://orcid.org/0000-0002-4772-8862</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1082-989X |
ispartof | Psychological methods, 2024-02, Vol.29 (1), p.48-64 |
issn | 1082-989X 1939-1463 |
language | eng |
recordid | cdi_proquest_miscellaneous_2731717587 |
source | APA PsycARTICLES; MEDLINE |
subjects | Bayes Theorem Computer Simulation Exploratory Factor Analysis Factor Analysis, Statistical Humans Models, Statistical Prediction Errors |
title | Estimating the Number of Factors in Exploratory Factor Analysis via Out-of-Sample Prediction Errors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T04%3A16%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20the%20Number%20of%20Factors%20in%20Exploratory%20Factor%20Analysis%20via%20Out-of-Sample%20Prediction%20Errors&rft.jtitle=Psychological%20methods&rft.au=Haslbeck,%20Jonas%20M.%20B.&rft.date=2024-02-01&rft.volume=29&rft.issue=1&rft.spage=48&rft.epage=64&rft.pages=48-64&rft.issn=1082-989X&rft.eissn=1939-1463&rft_id=info:doi/10.1037/met0000528&rft_dat=%3Cproquest_cross%3E2731717587%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731480288&rft_id=info:pmid/36326634&rfr_iscdi=true |