Estimating the Number of Factors in Exploratory Factor Analysis via Out-of-Sample Prediction Errors

Exploratory factor analysis (EFA) is one of the most popular statistical models in psychological science. A key problem in EFA is to estimate the number of factors. In this article, we present a new method for estimating the number of factors based on minimizing the out-of-sample prediction error of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychological methods 2024-02, Vol.29 (1), p.48-64
Hauptverfasser: Haslbeck, Jonas M. B., van Bork, Riet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 64
container_issue 1
container_start_page 48
container_title Psychological methods
container_volume 29
creator Haslbeck, Jonas M. B.
van Bork, Riet
description Exploratory factor analysis (EFA) is one of the most popular statistical models in psychological science. A key problem in EFA is to estimate the number of factors. In this article, we present a new method for estimating the number of factors based on minimizing the out-of-sample prediction error of candidate factor models. We show in an extensive simulation study that our method slightly outperforms existing methods, including parallel analysis, Bayesian information criterion (BIC), Akaike information criterion (AIC), root mean squared error of approximation (RMSEA), and exploratory graph analysis. In addition, we show that, among the best performing methods, our method is the one that is most robust across different specifications of the true factor model. We provide an implementation of our method in the R-package fspe. Translational Abstract Exploratory factor analysis (EFA) is one of the most popular statistical models in psychological science. A key problem in EFA is to estimate the number of factors. In this article, we present a new method for estimating the number of factors based on minimizing the out-of-sample prediction error of candidate factor models. We show in an extensive simulation study that our method slightly outperforms existing methods and is more robust across different specifications of the true factor model than other high performing methods. We provide an implementation of our method in the R-package fspe.
doi_str_mv 10.1037/met0000528
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2731717587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731717587</sourcerecordid><originalsourceid>FETCH-LOGICAL-a350t-a77acb06d216f98e97442031f795244d72de4284e44737facbae34436bff321f3</originalsourceid><addsrcrecordid>eNpdkF1LHDEUhoNU6rrtjT9AAr0pwmi-dpK5XGStgqhgC70L2cxJm2VmMiaZ0v33RnZVMDcn5_CcB86L0Akl55RwedFDJuUtmDpAM9rwpqKi5p_KnyhWNar5fYSOU9oQQgVX4jM64jVndc3FDNlVyr432Q9_cP4L-G7q1xBxcPjK2Bxiwn7Aq_9jF6Ip7XY_xsvBdNvkE_7nDb6fchVc9Wj6sQP8EKH1NvtQFmMsii_o0Jkuwdd9naNfV6ufl9fV7f2Pm8vlbWX4guTKSGnsmtQto7VrFDRSCEY4dbJZMCFayVoQTAkQQnLpCmuAC8HrtXOcUcfn6PvOO8bwNEHKuvfJQteZAcKUNJOcSioXShb02wd0E6ZYbtpRQhGmVKHOdpSNIaUITo-xhBW3mhL9Er1-j77Ap3vltO6hfUNfs363mdHoMW2tidnbDpKdYoQhv8g0azTVQvFnjmSNaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731480288</pqid></control><display><type>article</type><title>Estimating the Number of Factors in Exploratory Factor Analysis via Out-of-Sample Prediction Errors</title><source>APA PsycARTICLES</source><source>MEDLINE</source><creator>Haslbeck, Jonas M. B. ; van Bork, Riet</creator><contributor>Steinley, Douglas</contributor><creatorcontrib>Haslbeck, Jonas M. B. ; van Bork, Riet ; Steinley, Douglas</creatorcontrib><description>Exploratory factor analysis (EFA) is one of the most popular statistical models in psychological science. A key problem in EFA is to estimate the number of factors. In this article, we present a new method for estimating the number of factors based on minimizing the out-of-sample prediction error of candidate factor models. We show in an extensive simulation study that our method slightly outperforms existing methods, including parallel analysis, Bayesian information criterion (BIC), Akaike information criterion (AIC), root mean squared error of approximation (RMSEA), and exploratory graph analysis. In addition, we show that, among the best performing methods, our method is the one that is most robust across different specifications of the true factor model. We provide an implementation of our method in the R-package fspe. Translational Abstract Exploratory factor analysis (EFA) is one of the most popular statistical models in psychological science. A key problem in EFA is to estimate the number of factors. In this article, we present a new method for estimating the number of factors based on minimizing the out-of-sample prediction error of candidate factor models. We show in an extensive simulation study that our method slightly outperforms existing methods and is more robust across different specifications of the true factor model than other high performing methods. We provide an implementation of our method in the R-package fspe.</description><identifier>ISSN: 1082-989X</identifier><identifier>EISSN: 1939-1463</identifier><identifier>DOI: 10.1037/met0000528</identifier><identifier>PMID: 36326634</identifier><language>eng</language><publisher>United States: American Psychological Association</publisher><subject>Bayes Theorem ; Computer Simulation ; Exploratory Factor Analysis ; Factor Analysis, Statistical ; Humans ; Models, Statistical ; Prediction Errors</subject><ispartof>Psychological methods, 2024-02, Vol.29 (1), p.48-64</ispartof><rights>2022 American Psychological Association</rights><rights>2022, American Psychological Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a350t-a77acb06d216f98e97442031f795244d72de4284e44737facbae34436bff321f3</citedby><orcidid>0000-0001-9096-7837 ; 0000-0002-4772-8862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36326634$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Steinley, Douglas</contributor><creatorcontrib>Haslbeck, Jonas M. B.</creatorcontrib><creatorcontrib>van Bork, Riet</creatorcontrib><title>Estimating the Number of Factors in Exploratory Factor Analysis via Out-of-Sample Prediction Errors</title><title>Psychological methods</title><addtitle>Psychol Methods</addtitle><description>Exploratory factor analysis (EFA) is one of the most popular statistical models in psychological science. A key problem in EFA is to estimate the number of factors. In this article, we present a new method for estimating the number of factors based on minimizing the out-of-sample prediction error of candidate factor models. We show in an extensive simulation study that our method slightly outperforms existing methods, including parallel analysis, Bayesian information criterion (BIC), Akaike information criterion (AIC), root mean squared error of approximation (RMSEA), and exploratory graph analysis. In addition, we show that, among the best performing methods, our method is the one that is most robust across different specifications of the true factor model. We provide an implementation of our method in the R-package fspe. Translational Abstract Exploratory factor analysis (EFA) is one of the most popular statistical models in psychological science. A key problem in EFA is to estimate the number of factors. In this article, we present a new method for estimating the number of factors based on minimizing the out-of-sample prediction error of candidate factor models. We show in an extensive simulation study that our method slightly outperforms existing methods and is more robust across different specifications of the true factor model than other high performing methods. We provide an implementation of our method in the R-package fspe.</description><subject>Bayes Theorem</subject><subject>Computer Simulation</subject><subject>Exploratory Factor Analysis</subject><subject>Factor Analysis, Statistical</subject><subject>Humans</subject><subject>Models, Statistical</subject><subject>Prediction Errors</subject><issn>1082-989X</issn><issn>1939-1463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkF1LHDEUhoNU6rrtjT9AAr0pwmi-dpK5XGStgqhgC70L2cxJm2VmMiaZ0v33RnZVMDcn5_CcB86L0Akl55RwedFDJuUtmDpAM9rwpqKi5p_KnyhWNar5fYSOU9oQQgVX4jM64jVndc3FDNlVyr432Q9_cP4L-G7q1xBxcPjK2Bxiwn7Aq_9jF6Ip7XY_xsvBdNvkE_7nDb6fchVc9Wj6sQP8EKH1NvtQFmMsii_o0Jkuwdd9naNfV6ufl9fV7f2Pm8vlbWX4guTKSGnsmtQto7VrFDRSCEY4dbJZMCFayVoQTAkQQnLpCmuAC8HrtXOcUcfn6PvOO8bwNEHKuvfJQteZAcKUNJOcSioXShb02wd0E6ZYbtpRQhGmVKHOdpSNIaUITo-xhBW3mhL9Er1-j77Ap3vltO6hfUNfs363mdHoMW2tidnbDpKdYoQhv8g0azTVQvFnjmSNaQ</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Haslbeck, Jonas M. B.</creator><creator>van Bork, Riet</creator><general>American Psychological Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7RZ</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PSYQQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9096-7837</orcidid><orcidid>https://orcid.org/0000-0002-4772-8862</orcidid></search><sort><creationdate>20240201</creationdate><title>Estimating the Number of Factors in Exploratory Factor Analysis via Out-of-Sample Prediction Errors</title><author>Haslbeck, Jonas M. B. ; van Bork, Riet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a350t-a77acb06d216f98e97442031f795244d72de4284e44737facbae34436bff321f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bayes Theorem</topic><topic>Computer Simulation</topic><topic>Exploratory Factor Analysis</topic><topic>Factor Analysis, Statistical</topic><topic>Humans</topic><topic>Models, Statistical</topic><topic>Prediction Errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haslbeck, Jonas M. B.</creatorcontrib><creatorcontrib>van Bork, Riet</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>APA PsycArticles®</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Psychology</collection><collection>MEDLINE - Academic</collection><jtitle>Psychological methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haslbeck, Jonas M. B.</au><au>van Bork, Riet</au><au>Steinley, Douglas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating the Number of Factors in Exploratory Factor Analysis via Out-of-Sample Prediction Errors</atitle><jtitle>Psychological methods</jtitle><addtitle>Psychol Methods</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>29</volume><issue>1</issue><spage>48</spage><epage>64</epage><pages>48-64</pages><issn>1082-989X</issn><eissn>1939-1463</eissn><abstract>Exploratory factor analysis (EFA) is one of the most popular statistical models in psychological science. A key problem in EFA is to estimate the number of factors. In this article, we present a new method for estimating the number of factors based on minimizing the out-of-sample prediction error of candidate factor models. We show in an extensive simulation study that our method slightly outperforms existing methods, including parallel analysis, Bayesian information criterion (BIC), Akaike information criterion (AIC), root mean squared error of approximation (RMSEA), and exploratory graph analysis. In addition, we show that, among the best performing methods, our method is the one that is most robust across different specifications of the true factor model. We provide an implementation of our method in the R-package fspe. Translational Abstract Exploratory factor analysis (EFA) is one of the most popular statistical models in psychological science. A key problem in EFA is to estimate the number of factors. In this article, we present a new method for estimating the number of factors based on minimizing the out-of-sample prediction error of candidate factor models. We show in an extensive simulation study that our method slightly outperforms existing methods and is more robust across different specifications of the true factor model than other high performing methods. We provide an implementation of our method in the R-package fspe.</abstract><cop>United States</cop><pub>American Psychological Association</pub><pmid>36326634</pmid><doi>10.1037/met0000528</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-9096-7837</orcidid><orcidid>https://orcid.org/0000-0002-4772-8862</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1082-989X
ispartof Psychological methods, 2024-02, Vol.29 (1), p.48-64
issn 1082-989X
1939-1463
language eng
recordid cdi_proquest_miscellaneous_2731717587
source APA PsycARTICLES; MEDLINE
subjects Bayes Theorem
Computer Simulation
Exploratory Factor Analysis
Factor Analysis, Statistical
Humans
Models, Statistical
Prediction Errors
title Estimating the Number of Factors in Exploratory Factor Analysis via Out-of-Sample Prediction Errors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T04%3A16%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20the%20Number%20of%20Factors%20in%20Exploratory%20Factor%20Analysis%20via%20Out-of-Sample%20Prediction%20Errors&rft.jtitle=Psychological%20methods&rft.au=Haslbeck,%20Jonas%20M.%20B.&rft.date=2024-02-01&rft.volume=29&rft.issue=1&rft.spage=48&rft.epage=64&rft.pages=48-64&rft.issn=1082-989X&rft.eissn=1939-1463&rft_id=info:doi/10.1037/met0000528&rft_dat=%3Cproquest_cross%3E2731717587%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731480288&rft_id=info:pmid/36326634&rfr_iscdi=true