Mesenchymal stem cells encapsulation in chitosan and carboxymethyl chitosan hydrogels to enhance osteo-differentiation
Background Recently biomaterials utilized for designing scaffolds in tissue engineering are not cost-effective and eco-friendly. As a result, we design and develop biocompatible and bioactive hydrogels for osteo-tissue regeneration based on the natural polysaccharide chitosan. Three distinct hydroge...
Gespeichert in:
Veröffentlicht in: | Molecular biology reports 2022-12, Vol.49 (12), p.12063-12075 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12075 |
---|---|
container_issue | 12 |
container_start_page | 12063 |
container_title | Molecular biology reports |
container_volume | 49 |
creator | Sharifi, Fereshteh Hasani, Maryam Atyabi, Seyed Mohammad Yu, Baoqing Ghalandari, Behafarid Li, Dejian Ghorbani, Farnaz Irani, Shiva Gholami, Mohammadreza |
description | Background
Recently biomaterials utilized for designing scaffolds in tissue engineering are not cost-effective and eco-friendly. As a result, we design and develop biocompatible and bioactive hydrogels for osteo-tissue regeneration based on the natural polysaccharide chitosan. Three distinct hydrogel components were used for this.
Methods
Hydrogels networks were created using chitosan 2% (CTS 2%), carboxymethyl chitosan 2% (CMC 2%), and 50:50 mixtures of CTS and CMC (CTS/CMC 50:50). Furthermore, scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), degradation, and swelling behavior of design hydrogels were studied. Also, the cytocompatibility and osteo-differentiation potency were examined by encapsulating mesenchymal stem cells derived from adipose tissue (AMSCs) on the designed hydrogels.
Results
According to the findings, our results showed an acceptable pore structure, functional groups, and degradation rate of the designed hydrogels for in vitro evaluation. In addition, employing CMC instead of CTS or adding 50% CMC to the hydrogel component could improve the hydrogel's osteo-bioactivity without the use of external osteogenic differentiation agents.
Conclusion
The CMC-containing hydrogel not only caused early osteogenesis but also accelerated differentiation to the maturity phase of osteoblasts. |
doi_str_mv | 10.1007/s11033-022-08013-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2730643537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2742894529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-fe6c5bab8bc0eb96d496bd1a8c0f927860001c4e9a15c4ec889a22d4735a36253</originalsourceid><addsrcrecordid>eNqFkU9P3DAQxS1EpW5pv0BPkbj04jL-l9hHhKCtBOICZ8txJiQosRc7i8i3r5ethMShnEaa-b0nvXmEfGfwkwE0Z5kxEIIC5xQ0MEHNEdkw1QgqTaOPyQYEMCq1Yp_Jl5wfAUCyRm3I8w1mDH5YZzdVecG58jhNuSo7t827yS1jDNUYKj-MS8wuVC50lXepjS_rjMuwTm-nYe1SfMAiX2JxGFzwWMXiGmk39j0mDMv46viVfOrdlPHbv3lC7q8u7y5-0-vbX38uzq-pF1ottMfaq9a1uvWArak7aeq2Y0576A1vdF1yMC_ROKbK8Fobx3knG6GcqLkSJ-THwXeb4tMO82LnMe8TuoBxly3X0hgoL4OP0UZALYUSTUFP36GPcZdCCVIoybWRiptC8QPlU8w5YW-3aZxdWi0Du2_NHlqzpTX72prdi8RBlAscHjC9Wf9H9RdVipw4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2742894529</pqid></control><display><type>article</type><title>Mesenchymal stem cells encapsulation in chitosan and carboxymethyl chitosan hydrogels to enhance osteo-differentiation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sharifi, Fereshteh ; Hasani, Maryam ; Atyabi, Seyed Mohammad ; Yu, Baoqing ; Ghalandari, Behafarid ; Li, Dejian ; Ghorbani, Farnaz ; Irani, Shiva ; Gholami, Mohammadreza</creator><creatorcontrib>Sharifi, Fereshteh ; Hasani, Maryam ; Atyabi, Seyed Mohammad ; Yu, Baoqing ; Ghalandari, Behafarid ; Li, Dejian ; Ghorbani, Farnaz ; Irani, Shiva ; Gholami, Mohammadreza</creatorcontrib><description>Background
Recently biomaterials utilized for designing scaffolds in tissue engineering are not cost-effective and eco-friendly. As a result, we design and develop biocompatible and bioactive hydrogels for osteo-tissue regeneration based on the natural polysaccharide chitosan. Three distinct hydrogel components were used for this.
Methods
Hydrogels networks were created using chitosan 2% (CTS 2%), carboxymethyl chitosan 2% (CMC 2%), and 50:50 mixtures of CTS and CMC (CTS/CMC 50:50). Furthermore, scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), degradation, and swelling behavior of design hydrogels were studied. Also, the cytocompatibility and osteo-differentiation potency were examined by encapsulating mesenchymal stem cells derived from adipose tissue (AMSCs) on the designed hydrogels.
Results
According to the findings, our results showed an acceptable pore structure, functional groups, and degradation rate of the designed hydrogels for in vitro evaluation. In addition, employing CMC instead of CTS or adding 50% CMC to the hydrogel component could improve the hydrogel's osteo-bioactivity without the use of external osteogenic differentiation agents.
Conclusion
The CMC-containing hydrogel not only caused early osteogenesis but also accelerated differentiation to the maturity phase of osteoblasts.</description><identifier>ISSN: 0301-4851</identifier><identifier>EISSN: 1573-4978</identifier><identifier>DOI: 10.1007/s11033-022-08013-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adipose tissue ; Animal Anatomy ; Animal Biochemistry ; biocompatible materials ; Biological activity ; Biomaterials ; Biomedical and Life Sciences ; bone formation ; Chitosan ; cost effectiveness ; Design ; electron microscopy ; encapsulation ; Extracellular Matrix Biology ; Fourier transforms ; Histology ; Hydrogels ; Infrared spectroscopy ; Life Sciences ; Mesenchymal stem cells ; Morphology ; Original Article ; Osteoblastogenesis ; osteoblasts ; Osteogenesis ; Polysaccharides ; Scanning electron microscopy ; Stem cells ; Tissue engineering</subject><ispartof>Molecular biology reports, 2022-12, Vol.49 (12), p.12063-12075</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-fe6c5bab8bc0eb96d496bd1a8c0f927860001c4e9a15c4ec889a22d4735a36253</citedby><cites>FETCH-LOGICAL-c385t-fe6c5bab8bc0eb96d496bd1a8c0f927860001c4e9a15c4ec889a22d4735a36253</cites><orcidid>0000-0002-4202-9931</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11033-022-08013-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11033-022-08013-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Sharifi, Fereshteh</creatorcontrib><creatorcontrib>Hasani, Maryam</creatorcontrib><creatorcontrib>Atyabi, Seyed Mohammad</creatorcontrib><creatorcontrib>Yu, Baoqing</creatorcontrib><creatorcontrib>Ghalandari, Behafarid</creatorcontrib><creatorcontrib>Li, Dejian</creatorcontrib><creatorcontrib>Ghorbani, Farnaz</creatorcontrib><creatorcontrib>Irani, Shiva</creatorcontrib><creatorcontrib>Gholami, Mohammadreza</creatorcontrib><title>Mesenchymal stem cells encapsulation in chitosan and carboxymethyl chitosan hydrogels to enhance osteo-differentiation</title><title>Molecular biology reports</title><addtitle>Mol Biol Rep</addtitle><description>Background
Recently biomaterials utilized for designing scaffolds in tissue engineering are not cost-effective and eco-friendly. As a result, we design and develop biocompatible and bioactive hydrogels for osteo-tissue regeneration based on the natural polysaccharide chitosan. Three distinct hydrogel components were used for this.
Methods
Hydrogels networks were created using chitosan 2% (CTS 2%), carboxymethyl chitosan 2% (CMC 2%), and 50:50 mixtures of CTS and CMC (CTS/CMC 50:50). Furthermore, scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), degradation, and swelling behavior of design hydrogels were studied. Also, the cytocompatibility and osteo-differentiation potency were examined by encapsulating mesenchymal stem cells derived from adipose tissue (AMSCs) on the designed hydrogels.
Results
According to the findings, our results showed an acceptable pore structure, functional groups, and degradation rate of the designed hydrogels for in vitro evaluation. In addition, employing CMC instead of CTS or adding 50% CMC to the hydrogel component could improve the hydrogel's osteo-bioactivity without the use of external osteogenic differentiation agents.
Conclusion
The CMC-containing hydrogel not only caused early osteogenesis but also accelerated differentiation to the maturity phase of osteoblasts.</description><subject>Adipose tissue</subject><subject>Animal Anatomy</subject><subject>Animal Biochemistry</subject><subject>biocompatible materials</subject><subject>Biological activity</subject><subject>Biomaterials</subject><subject>Biomedical and Life Sciences</subject><subject>bone formation</subject><subject>Chitosan</subject><subject>cost effectiveness</subject><subject>Design</subject><subject>electron microscopy</subject><subject>encapsulation</subject><subject>Extracellular Matrix Biology</subject><subject>Fourier transforms</subject><subject>Histology</subject><subject>Hydrogels</subject><subject>Infrared spectroscopy</subject><subject>Life Sciences</subject><subject>Mesenchymal stem cells</subject><subject>Morphology</subject><subject>Original Article</subject><subject>Osteoblastogenesis</subject><subject>osteoblasts</subject><subject>Osteogenesis</subject><subject>Polysaccharides</subject><subject>Scanning electron microscopy</subject><subject>Stem cells</subject><subject>Tissue engineering</subject><issn>0301-4851</issn><issn>1573-4978</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU9P3DAQxS1EpW5pv0BPkbj04jL-l9hHhKCtBOICZ8txJiQosRc7i8i3r5ethMShnEaa-b0nvXmEfGfwkwE0Z5kxEIIC5xQ0MEHNEdkw1QgqTaOPyQYEMCq1Yp_Jl5wfAUCyRm3I8w1mDH5YZzdVecG58jhNuSo7t827yS1jDNUYKj-MS8wuVC50lXepjS_rjMuwTm-nYe1SfMAiX2JxGFzwWMXiGmk39j0mDMv46viVfOrdlPHbv3lC7q8u7y5-0-vbX38uzq-pF1ottMfaq9a1uvWArak7aeq2Y0576A1vdF1yMC_ROKbK8Fobx3knG6GcqLkSJ-THwXeb4tMO82LnMe8TuoBxly3X0hgoL4OP0UZALYUSTUFP36GPcZdCCVIoybWRiptC8QPlU8w5YW-3aZxdWi0Du2_NHlqzpTX72prdi8RBlAscHjC9Wf9H9RdVipw4</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Sharifi, Fereshteh</creator><creator>Hasani, Maryam</creator><creator>Atyabi, Seyed Mohammad</creator><creator>Yu, Baoqing</creator><creator>Ghalandari, Behafarid</creator><creator>Li, Dejian</creator><creator>Ghorbani, Farnaz</creator><creator>Irani, Shiva</creator><creator>Gholami, Mohammadreza</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-4202-9931</orcidid></search><sort><creationdate>20221201</creationdate><title>Mesenchymal stem cells encapsulation in chitosan and carboxymethyl chitosan hydrogels to enhance osteo-differentiation</title><author>Sharifi, Fereshteh ; Hasani, Maryam ; Atyabi, Seyed Mohammad ; Yu, Baoqing ; Ghalandari, Behafarid ; Li, Dejian ; Ghorbani, Farnaz ; Irani, Shiva ; Gholami, Mohammadreza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-fe6c5bab8bc0eb96d496bd1a8c0f927860001c4e9a15c4ec889a22d4735a36253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adipose tissue</topic><topic>Animal Anatomy</topic><topic>Animal Biochemistry</topic><topic>biocompatible materials</topic><topic>Biological activity</topic><topic>Biomaterials</topic><topic>Biomedical and Life Sciences</topic><topic>bone formation</topic><topic>Chitosan</topic><topic>cost effectiveness</topic><topic>Design</topic><topic>electron microscopy</topic><topic>encapsulation</topic><topic>Extracellular Matrix Biology</topic><topic>Fourier transforms</topic><topic>Histology</topic><topic>Hydrogels</topic><topic>Infrared spectroscopy</topic><topic>Life Sciences</topic><topic>Mesenchymal stem cells</topic><topic>Morphology</topic><topic>Original Article</topic><topic>Osteoblastogenesis</topic><topic>osteoblasts</topic><topic>Osteogenesis</topic><topic>Polysaccharides</topic><topic>Scanning electron microscopy</topic><topic>Stem cells</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharifi, Fereshteh</creatorcontrib><creatorcontrib>Hasani, Maryam</creatorcontrib><creatorcontrib>Atyabi, Seyed Mohammad</creatorcontrib><creatorcontrib>Yu, Baoqing</creatorcontrib><creatorcontrib>Ghalandari, Behafarid</creatorcontrib><creatorcontrib>Li, Dejian</creatorcontrib><creatorcontrib>Ghorbani, Farnaz</creatorcontrib><creatorcontrib>Irani, Shiva</creatorcontrib><creatorcontrib>Gholami, Mohammadreza</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Molecular biology reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharifi, Fereshteh</au><au>Hasani, Maryam</au><au>Atyabi, Seyed Mohammad</au><au>Yu, Baoqing</au><au>Ghalandari, Behafarid</au><au>Li, Dejian</au><au>Ghorbani, Farnaz</au><au>Irani, Shiva</au><au>Gholami, Mohammadreza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesenchymal stem cells encapsulation in chitosan and carboxymethyl chitosan hydrogels to enhance osteo-differentiation</atitle><jtitle>Molecular biology reports</jtitle><stitle>Mol Biol Rep</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>49</volume><issue>12</issue><spage>12063</spage><epage>12075</epage><pages>12063-12075</pages><issn>0301-4851</issn><eissn>1573-4978</eissn><abstract>Background
Recently biomaterials utilized for designing scaffolds in tissue engineering are not cost-effective and eco-friendly. As a result, we design and develop biocompatible and bioactive hydrogels for osteo-tissue regeneration based on the natural polysaccharide chitosan. Three distinct hydrogel components were used for this.
Methods
Hydrogels networks were created using chitosan 2% (CTS 2%), carboxymethyl chitosan 2% (CMC 2%), and 50:50 mixtures of CTS and CMC (CTS/CMC 50:50). Furthermore, scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), degradation, and swelling behavior of design hydrogels were studied. Also, the cytocompatibility and osteo-differentiation potency were examined by encapsulating mesenchymal stem cells derived from adipose tissue (AMSCs) on the designed hydrogels.
Results
According to the findings, our results showed an acceptable pore structure, functional groups, and degradation rate of the designed hydrogels for in vitro evaluation. In addition, employing CMC instead of CTS or adding 50% CMC to the hydrogel component could improve the hydrogel's osteo-bioactivity without the use of external osteogenic differentiation agents.
Conclusion
The CMC-containing hydrogel not only caused early osteogenesis but also accelerated differentiation to the maturity phase of osteoblasts.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11033-022-08013-9</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4202-9931</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-4851 |
ispartof | Molecular biology reports, 2022-12, Vol.49 (12), p.12063-12075 |
issn | 0301-4851 1573-4978 |
language | eng |
recordid | cdi_proquest_miscellaneous_2730643537 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adipose tissue Animal Anatomy Animal Biochemistry biocompatible materials Biological activity Biomaterials Biomedical and Life Sciences bone formation Chitosan cost effectiveness Design electron microscopy encapsulation Extracellular Matrix Biology Fourier transforms Histology Hydrogels Infrared spectroscopy Life Sciences Mesenchymal stem cells Morphology Original Article Osteoblastogenesis osteoblasts Osteogenesis Polysaccharides Scanning electron microscopy Stem cells Tissue engineering |
title | Mesenchymal stem cells encapsulation in chitosan and carboxymethyl chitosan hydrogels to enhance osteo-differentiation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T05%3A40%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesenchymal%20stem%20cells%20encapsulation%20in%20chitosan%20and%20carboxymethyl%20chitosan%20hydrogels%20to%20enhance%20osteo-differentiation&rft.jtitle=Molecular%20biology%20reports&rft.au=Sharifi,%20Fereshteh&rft.date=2022-12-01&rft.volume=49&rft.issue=12&rft.spage=12063&rft.epage=12075&rft.pages=12063-12075&rft.issn=0301-4851&rft.eissn=1573-4978&rft_id=info:doi/10.1007/s11033-022-08013-9&rft_dat=%3Cproquest_cross%3E2742894529%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2742894529&rft_id=info:pmid/&rfr_iscdi=true |