Mesenchymal stem cells encapsulation in chitosan and carboxymethyl chitosan hydrogels to enhance osteo-differentiation

Background Recently biomaterials utilized for designing scaffolds in tissue engineering are not cost-effective and eco-friendly. As a result, we design and develop biocompatible and bioactive hydrogels for osteo-tissue regeneration based on the natural polysaccharide chitosan. Three distinct hydroge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology reports 2022-12, Vol.49 (12), p.12063-12075
Hauptverfasser: Sharifi, Fereshteh, Hasani, Maryam, Atyabi, Seyed Mohammad, Yu, Baoqing, Ghalandari, Behafarid, Li, Dejian, Ghorbani, Farnaz, Irani, Shiva, Gholami, Mohammadreza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Recently biomaterials utilized for designing scaffolds in tissue engineering are not cost-effective and eco-friendly. As a result, we design and develop biocompatible and bioactive hydrogels for osteo-tissue regeneration based on the natural polysaccharide chitosan. Three distinct hydrogel components were used for this. Methods Hydrogels networks were created using chitosan 2% (CTS 2%), carboxymethyl chitosan 2% (CMC 2%), and 50:50 mixtures of CTS and CMC (CTS/CMC 50:50). Furthermore, scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), degradation, and swelling behavior of design hydrogels were studied. Also, the cytocompatibility and osteo-differentiation potency were examined by encapsulating mesenchymal stem cells derived from adipose tissue (AMSCs) on the designed hydrogels. Results According to the findings, our results showed an acceptable pore structure, functional groups, and degradation rate of the designed hydrogels for in vitro evaluation. In addition, employing CMC instead of CTS or adding 50% CMC to the hydrogel component could improve the hydrogel's osteo-bioactivity without the use of external osteogenic differentiation agents. Conclusion The CMC-containing hydrogel not only caused early osteogenesis but also accelerated differentiation to the maturity phase of osteoblasts.
ISSN:0301-4851
1573-4978
DOI:10.1007/s11033-022-08013-9