Biomineralization and AHLs-guided quorum sensing enhanced phosphorus recovery in the alternating aerobic/anaerobic biofilm system under metal ion stress

The alternating aerobic/anaerobic biofilm system had been applied for phosphorus (P) enrichment and recovery because of the advantage of low energy consumption and high efficiency. The metal ions and N-acyl-L-homoserine lactones (AHLs) in system were studied to better clarify the mechanism of P upta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental management 2023-01, Vol.325, p.116583-116583, Article 116583
Hauptverfasser: Zhang, Hao, Zhang, Shuang-Shuang, Zhang, Wei, Zhu, Liang, Li, Yi-Ping, Pan, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The alternating aerobic/anaerobic biofilm system had been applied for phosphorus (P) enrichment and recovery because of the advantage of low energy consumption and high efficiency. The metal ions and N-acyl-L-homoserine lactones (AHLs) in system were studied to better clarify the mechanism of P uptake/release under metal ion stress. The results indicated that the increase of metal ions stimulated the release of AHLs, and AHLs-guided quorum sensing (QS) enhanced P uptake. Moreover, biomineralization could stimulate the increase of P content in biofilm (Pbiofilm). Meanwhile, some ortho-p was converted to short-chain poly-p in extracellular polymer substance (EPS), and others were transferred into cell through EPS to synthesize poly-p. With the Pbiofilm increased, more P could be absorbed/released due to the shift in the metabolic model of polyphosphate accumulating organisms (PAOs). The release of AHLs between microorganisms was also inhibited when PAOs reached the state of P saturation (75.6 ± 2.5 mg/g SS), which meant that the effect of signaling function would tend to stabilize, and the 169.2 ± 2.6 mg/L P concentration in the enriched solution was obtained due to the P release was inhibited. Moreover, P was rapidly transferred to the new enriched solution after the P was recovered, and PAOs restored its capability of P uptake/release. In addition, 31P-NMR analysis demonstrated that EPS played a major role in PAOs compared to cell, and inorganic phosphorus (IP) played an essential role in the uptake/release of P compared to organic phosphorus (OP). Furthermore, the microbiological analysis showed that Candidatus Accumulibacter was positively correlated with AHLs (P 
ISSN:0301-4797
1095-8630
DOI:10.1016/j.jenvman.2022.116583