Wasserstein-based texture analysis in radiomic studies

The emerging field of radiomics that transforms standard-of-care images to quantifiable scalar statistics endeavors to reveal the information hidden in these macroscopic images. The concept of texture is widely used and essential in many radiomic-based studies. Practice usually reduces spatial multi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computerized medical imaging and graphics 2022-12, Vol.102, p.102129-102129, Article 102129
Hauptverfasser: Belkhatir, Zehor, Estépar, Raúl San José, Tannenbaum, Allen R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The emerging field of radiomics that transforms standard-of-care images to quantifiable scalar statistics endeavors to reveal the information hidden in these macroscopic images. The concept of texture is widely used and essential in many radiomic-based studies. Practice usually reduces spatial multidimensional texture matrices, e.g., gray-level co-occurrence matrices (GLCMs), to summary scalar features. These statistical features have been demonstrated to be strongly correlated and tend to contribute redundant information; and does not account for the spatial information hidden in the multivariate texture matrices. This study proposes a novel pipeline to deal with spatial texture features in radiomic studies. A new set of textural features that preserve the spatial information inherent in GLCMs is proposed and used for classification purposes. The set of the new features uses the Wasserstein metric from optimal mass transport theory (OMT) to quantify the spatial similarity between samples within a given label class. In particular, based on a selected subset of texture GLCMs from the training cohort, we propose new representative spatial texture features, which we incorporate into a supervised image classification pipeline. The pipeline relies on the support vector machine (SVM) algorithm along with Bayesian optimization and the Wasserstein metric. The selection of the best GLCM references is considered for each classification label and is performed during the training phase of the SVM classifier using a Bayesian optimizer. We assume that sample fitness is defined based on closeness (in the sense of the Wasserstein metric) and high correlation (Spearman’s rank sense) with other samples in the same class. Moreover, the newly defined spatial texture features consist of the Wasserstein distance between the optimally selected references and the remaining samples. We assessed the performance of the proposed classification pipeline in diagnosing the coronavirus disease 2019 (COVID-19) from computed tomographic (CT) images. To evaluate the proposed spatial features’ added value, we compared the performance of the proposed classification pipeline with other SVM-based classifiers that account for different texture features, namely: statistical features only, optimized spatial features using Euclidean metric, non-optimized spatial features with Wasserstein metric. The proposed technique, which accounts for the optimized spatial texture feature with Wasserstein metric
ISSN:0895-6111
1879-0771
DOI:10.1016/j.compmedimag.2022.102129