How do others cope? Extracting coping strategies for adverse drug events from social media
Patients advise their peers on how to cope with their illness in daily life on online support groups. To date, no efforts have been made to automatically extract recommended coping strategies from online patient discussion groups. We introduce this new task, which poses a number of challenges includ...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical informatics 2023-03, Vol.139, p.104228-104228, Article 104228 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Patients advise their peers on how to cope with their illness in daily life on online support groups. To date, no efforts have been made to automatically extract recommended coping strategies from online patient discussion groups. We introduce this new task, which poses a number of challenges including complex, long entities, a large long-tailed label space, and cross-document relations. We present an initial ontology for coping strategies as a starting point for future research on coping strategies, and the first end-to-end pipeline for extracting coping strategies for side effects. We also compared two possible computational solutions for this novel and highly challenging task; multi-label classification and named entity recognition (NER) with entity linking (EL). We evaluated our methods on the discussion forum from the Facebook group of the worldwide patient support organization ‘GIST support international’ (GSI); GIST support international donated the data to us. We found that coping strategy extraction is difficult and both methods attain limited performance (measured with F1 score) on held out test sets; multi-label classification outperforms NER+EL (F1=0.220 vs F1=0.155). An inspection of the multi-label classification output revealed that for some of the incorrect predictions, the reference label is close to the predicted label in the ontology (e.g. the predicted label ‘juice’ instead of the more specific reference label ‘grapefruit juice’). Performance increased to F1=0.498 when we evaluated at a coarser level of the ontology. We conclude that our pipeline can be used in a semi-automatic setting, in interaction with domain experts to discover coping strategies for side effects from a patient forum. For example, we found that patients recommend ginger tea for nausea and magnesium and potassium supplements for cramps. This information can be used as input for patient surveys or clinical studies.
[Display omitted]
•We present a novel task: the extraction of coping strategies for side effects.•We create an initial ontology for coping strategies.•Multi-label classification outperforms Named Entity Recognition with entity linking.•Our pipeline can semi-automatically discover coping strategies from a patient forum. |
---|---|
ISSN: | 1532-0464 1532-0480 |
DOI: | 10.1016/j.jbi.2022.104228 |