Degradation of 4-chlorophenol through cooperative reductive and oxidative processes in an electrochemical system
Electrochemical treatment can be an effective approach for degrading recalcitrant organic contaminants because its anode/cathode produces powerful oxidizing/reducing conditions. Herein, through the cooperation of the cathodic reductive and anodic oxidative processes, 4-chlorophenol (4-CP) was succes...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2023-01, Vol.442, p.130126-130126, Article 130126 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electrochemical treatment can be an effective approach for degrading recalcitrant organic contaminants because its anode/cathode produces powerful oxidizing/reducing conditions. Herein, through the cooperation of the cathodic reductive and anodic oxidative processes, 4-chlorophenol (4-CP) was successfully degraded in an electrochemical system. TiO2 nanotube arrays (TNTAs)/Sb-SnO2 and TNTAs/Pd were successfully prepared and served as the anode and cathode electrodes, respectively, to generate oxidative (hydroxyl radical, ·OH) and reductive (chemically adsorbed hydrogen, Hads) agents. The sequential reduction-oxidation (SRO) process provided a reasonable degradation pathway that accomplished reductive detoxification in the cathode and oxidative mineralization in the anode. The SRO mode achieved dechlorination efficiency (DE) of 86.9 ± 3.9% and TOC removal efficiency of 64.8 ± 4.2% within 3 h and under a current density of 8 mA cm−2, both of which were significantly higher than those obtained in the sequential oxidation-reduction or the simultaneous redox modes. The increment of current density and reaction time could improve 4-CP degradation performance, but a high current density would decrease the cathode stability and a longer reaction time led to the generation of ClO4-. This study has demonstrated that sequential reduction-oxidation can be an effective and tunable process for degrading recalcitrant organic contaminants.
[Display omitted]
•4-CP removal is achieved via cooperative cathodic reduction and anodic oxidation.•Sequential reduction-oxidation results in the best detoxification and mineralization.•Both current density and reaction time are the key factors and optimized.•Potential problems like electrode stability & ClO4- generation warrant attention.•Specific degradation mechanism of 4-CP is analyzed and discussed. |
---|---|
ISSN: | 0304-3894 1873-3336 |
DOI: | 10.1016/j.jhazmat.2022.130126 |