Pickering Emulsions Stabilized by Binary Mixtures of Colloidal Particles: Synergies between Contrasting Properties
Pickering emulsions that are stabilized by colloidal particles have attracted substantial research attention because of their potential applications in various industries. Previously, single colloidal particles have usually been used to fabricate Pickering emulsions and to investigate the stabilizat...
Gespeichert in:
Veröffentlicht in: | Langmuir 2022-11, Vol.38 (44), p.13322-13329 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pickering emulsions that are stabilized by colloidal particles have attracted substantial research attention because of their potential applications in various industries. Previously, single colloidal particles have usually been used to fabricate Pickering emulsions and to investigate the stabilization mechanism. However, surface modification of the colloidal stabilizer is normally required to adjust the particle wettability, which often involves chemical modification, the adsorption of a surfactant or polymer, and the addition of an electrolyte. Such a modification is expensive, time-consuming, and thus only partially effective. In this Perspective, we describe an alternative approach that uses binary mixtures of particles as stabilizers and could be an effective solution to the above-described problems with Pickering emulsions. We introduce various types of Pickering emulsions stabilized by binary mixtures of particles with different functional groups, opposite charges, or opposite wettabilities (i.e., they are hydrophilic or hydrophobic). Examples of stabilizing mechanisms are discussed, showing that compared with emulsions stabilized by single colloidal particles, emulsions stabilized by binary mixtures of particles are generated via simpler particle-pretreatment processes and have higher stability and customizable properties and thus can enable the exploration of the next generation of Pickering emulsions. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/acs.langmuir.2c02338 |