Quasi-real-time dual-comb spectroscopy with 750-MHz Yb:fiber combs
We present quasi-real-time dual-comb spectroscopy (DCS) using two Yb:fiber combs with ∼750 MHz repetition rates. A computational coherent averaging technique is employed to correct timing and phase fluctuations of the measured dual-comb interferogram (IGM). Quasi-real-time phase correction of 1-ms l...
Gespeichert in:
Veröffentlicht in: | Optics express 2022-08, Vol.30 (16), p.28427-28437 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present quasi-real-time dual-comb spectroscopy (DCS) using two Yb:fiber combs with ∼750 MHz repetition rates. A computational coherent averaging technique is employed to correct timing and phase fluctuations of the measured dual-comb interferogram (IGM). Quasi-real-time phase correction of 1-ms long acquisitions occurs every 1.5 seconds and is assisted by coarse radio frequency (RF) phase-locking of an isolated RF comb mode. After resampling and global offset phase correction, the RF comb linewidth is reduced from 200 kHz to ∼1 kHz, while the line-to-floor ratio increases 13 dB in power in 1 ms. Using simultaneous offset frequency correction in opposite phases, we correct the aliased RF spectrum spanning three Nyquist zones, which yields an optical coverage of ∼180 GHz around 1.035 µm probed on a sub-microsecond timescale. The absorption profile of gaseous acetylene is observed to validate the presented technique. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.460720 |