Generation of single circularly polarized attosecond pulses from near-critical density plasma irradiated by a two-color co-rotating circularly polarized laser

In this paper, a new method is proposed to efficiently generate a single intense attosecond pulse with circular polarization (CP) through the interaction of an intense driving laser with a near-critical density plasma target. The driving laser is composed of two co-rotating CP lasers with similar fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2022-10, Vol.30 (22), p.40063-40074
Hauptverfasser: Li, Qianni, Xu, Xinrong, Wu, Yanbo, Zou, Debin, Yin, Yan, Yu, Tongpu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a new method is proposed to efficiently generate a single intense attosecond pulse with circular polarization (CP) through the interaction of an intense driving laser with a near-critical density plasma target. The driving laser is composed of two co-rotating CP lasers with similar frequencies but different pulse widths. When the matching condition is satisfied, the combined field is modulated to a short intense pulse followed by a weak tail. The resulting laser falling edge becomes steeper than the initial sub-pulses, which induces a quick one-time oscillation of the target surface. Meanwhile, the tail guarantees the energy to be compressed simultaneously in both polarization directions to the same extent, so that a single CP attosecond pulse can be produced efficiently and robustly via our method, which has been confirmed through extensive numerical simulations. In addition, our method makes it possible to generate a single CP attosecond pulse even for multi-cycle pulses that are already available for existing laser systems. This provides a novel way to advance the investigation of chiral-sensitive light-matter interactions in attosecond scales.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.472982