Security analysis of a QAM modulated quantum noise stream cipher under a correlation attack

Quantum noise stream cipher where encrypted signals are masked by quantum noise and ASE noise provides a physical layer of security. It requires the transmitter and the receiver to share a stream cipher that is generated from a PRNG. Yet a correlation attack threatens its security due to the mathema...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2022-10, Vol.30 (22), p.40645-40656
Hauptverfasser: Zhang, Mingrui, Li, Yajie, Song, Haokun, Zhu, Kongni, Zhao, Yongli, Zhang, Jie
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum noise stream cipher where encrypted signals are masked by quantum noise and ASE noise provides a physical layer of security. It requires the transmitter and the receiver to share a stream cipher that is generated from a PRNG. Yet a correlation attack threatens its security due to the mathematical properties of PRNG. This paper discusses the security of QNSC system under correlation attacks. Our experiment results find that the security of the whole system depends on the cycle to refresh the seed key and the correlation between the incepted running key, original running key, and seed key. Furthermore, it is important to provide security for the QNSC system by maintaining low optical power. Besides, this new analytical method provides quantitative security analysis for a QNSC system under a correlation attack.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.472581