Supramolecular Hydrogel Dressing: Effect of Lignin on the Self-Healing, Antibacterial, Antioxidant, and Biological Activity Improvement

The functionalization and performance improvement of supramolecular hydrogels are very important for their application in the wound dressing field. Inspired by the role of lignin in plant cell walls, sulfonated lignin is introduced into the supramolecular hydrogel to improve functionality, mechanica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-10, Vol.14 (44), p.50199-50214
Hauptverfasser: Han, Xiao, Su, Yingying, Che, Guanda, Wei, Qiulin, Zheng, Hao, Zhou, Jinghui, Li, Yao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The functionalization and performance improvement of supramolecular hydrogels are very important for their application in the wound dressing field. Inspired by the role of lignin in plant cell walls, sulfonated lignin is introduced into the supramolecular hydrogel to improve functionality, mechanical strength, and biological activity. According to the chemical structure characteristics of the sulfonated lignin and the requirements for wound dressing, a novel polymer system is designed and successfully synthesized to cooperate with the sulfonated lignin to form the supramolecular hydrogel dressings. The introduction of the sulfonated lignin can effectively improve the mechanical strength, self-healing property, antioxidant activity, and biological activity of the obtained supramolecular hydrogel dressings. In the rat wound healing model experiment, the supramolecular hydrogel dressings can maintain the moist environment on the wound surface, clean up the excretion of wound tissue, promote wound healing, and reduce the occurrence of inflammation. This supramolecular hydrogel dressing shows obvious potential for wound management and treatment by a facile and effective approach and has great promise for long-term application of wound dressings. This strategy for designing polymers according to the chemical structure characteristics of the sulfonated lignin and the application requirements has reference value for further development of biomass-based compound materials.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.2c15411