Emotional Analysis of Tweets About Clinically Extremely Vulnerable COVID-19 Groups
BackgroundClinically extremely vulnerable (CEV) individuals have a significantly higher risk of morbidity and mortality from coronavirus disease 2019 (COVID-19). This high risk is due to predispositions such as chronic obstructive pulmonary disease (COPD), diabetes mellitus, hypertension, smoking, o...
Gespeichert in:
Veröffentlicht in: | Curēus (Palo Alto, CA) CA), 2022-09, Vol.14 (9), p.e29323-e29323 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | BackgroundClinically extremely vulnerable (CEV) individuals have a significantly higher risk of morbidity and mortality from coronavirus disease 2019 (COVID-19). This high risk is due to predispositions such as chronic obstructive pulmonary disease (COPD), diabetes mellitus, hypertension, smoking, or extreme age (≥75). The initial COVID-19 preventive measures (use of face masks, social distancing, social bubbles) and vaccine allocation prioritized this group of vulnerable individuals to ensure their continued protection. However, as countries start relaxing the lockdown measures to help prevent socio-economic collapse, the impact of this relaxation on CEVs is once again brought to light. In this study, we set out to understand the impact of policy changes on the lives of CEVs by analyzing Twitter data with the hashtag #highriskcovid used by many high-risk individuals to tweet about and express their opinions and feelings.MethodologyTweets were extracted from the Twitter API between March 01, 2022, and April 21, 2022, using the Twarc2 tool. Extracted tweets were in English and included the hashtag #highriskcovid. We evaluated the most frequently used words and hashtags by calculating term frequency-inverse document frequency, and the location of tweets using the tidygeocoder package (method = osm). We also evaluated the sentiments and emotions depicted by these tweets using the National Research Council sentiment lexicon of the Syuzhet package. Finally, we used the latent Dirichlet allocation algorithm to determine relevant high-risk COVID-19 themes.ResultsThe vast majority of the tweets originated from the United States (64%), Canada (22%), and the United Kingdom (4%). The most common hashtags were #highriskcovid (25.5%), #covid (6.82%), #immunocompromised (4.93%), #covidisnotover (4.0%), and #Maskup (1.40%), and the most frequently used words were immunocompromised (1.64%), people (1.4%), disabled (0.97%), maskup (0.85%), and eugenics (0.85%). The tweets were more negative (19.27%) than positive, and the most expressed negative emotions were fear (13.62%) and sadness (12.47%). At the same time, trust was the most expressed positive emotion and was used in relation to belief in masks, policies, and health workers to help. Finally, we detected frequently co-tweeted words such asmass and disaster, deadly and disabling, high and risk, public and health, immunocompromised and people, mass and disaster, and deadly and disabling.ConclusionsThe study provides evi |
---|---|
ISSN: | 2168-8184 2168-8184 |
DOI: | 10.7759/cureus.29323 |