Photochromic Semiconductors: Bottom-Up Strategy to Construct Type II-Stacking Viologen π‑Aggregates

Semiconductor conductivities depend largely on the crystal structures and the associated electronic structures. If the electronic structures can be switched reversibly in the same crystal structure, then a drastic conductivity change may be controllable. The effect of electron transfer (ET) on semic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2022-10, Vol.61 (43), p.17196-17201
Hauptverfasser: Wang, Peng-Hao, Liu, Bin-Wen, Wang, Guo-Qiang, Sun, Cai
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Semiconductor conductivities depend largely on the crystal structures and the associated electronic structures. If the electronic structures can be switched reversibly in the same crystal structure, then a drastic conductivity change may be controllable. The effect of electron transfer (ET) on semiconductor conductivity remained elusive so far. In this work, a series of two pillared inorganicorganic hybrid photochromic semiconductors (PSCs), [(CQ)­Pb3X6(H2O)]·2H2O [X = Cl (1) and Br (2), CQ = N-4,4′-bipyridiniopropionate (viologen)], with II-stacking viologen π-aggregates, are constructed by a bottom-up self-assembly strategy through inorganic skeleton-directed intercalation and intermolecular noncovalent interaction. The conductivities are abnormally “invariant” after photoinduced ET, breaking the convention that the generation of radicals favors conductivity. The abnormally “invariant” conductivities are mainly derived from approximate electronic couplings before and after ET between II-stacking viologen π-aggregates.
ISSN:0020-1669
1520-510X
DOI:10.1021/acs.inorgchem.2c02760