On the Importance of Feedback for Categorization: Revisiting Category Learning Experiments Using an Adaptive Filter Model
Associative accounts of category learning have been, for the most part, abandoned in favor of cognitive explanations (e.g., similarity, explicit rules). In the current work, we implement an Adaptive Linear Filter (ALF) closely related to the Rescorla and Wagner learning rule, and use it to tackle th...
Gespeichert in:
Veröffentlicht in: | Journal of experimental psychology. Animal behavior processes 2022-10, Vol.48 (4), p.295-306 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Associative accounts of category learning have been, for the most part, abandoned in favor of cognitive explanations (e.g., similarity, explicit rules). In the current work, we implement an Adaptive Linear Filter (ALF) closely related to the Rescorla and Wagner learning rule, and use it to tackle three learning tasks that pose challenges to an associative view of category learning. Across three computational simulations, we show that the ALF is in fact able to make the predictions that seemed problematic. Notably, in our simulations we use exactly the same model and specifications, attesting to the generality of our account. We discuss the consequences of our findings for the category learning literature. |
---|---|
ISSN: | 2329-8456 2329-8464 |
DOI: | 10.1037/xan0000339 |