MTCH2 is a mitochondrial outer membrane protein insertase
In the mitochondrial outer membrane, α-helical transmembrane proteins play critical roles in cytoplasmic-mitochondrial communication. Using genome-wide CRISPR screens, we identified mitochondrial carrier homolog 2 (MTCH2), and its paralog MTCH1, and showed that it is required for insertion of biophy...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2022-10, Vol.378 (6617), p.317-322 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the mitochondrial outer membrane, α-helical transmembrane proteins play critical roles in cytoplasmic-mitochondrial communication. Using genome-wide CRISPR screens, we identified mitochondrial carrier homolog 2 (MTCH2), and its paralog MTCH1, and showed that it is required for insertion of biophysically diverse tail-anchored (TA), signal-anchored, and multipass proteins, but not outer membrane β-barrel proteins. Purified MTCH2 was sufficient to mediate insertion into reconstituted proteoliposomes. Functional and mutational studies suggested that MTCH2 has evolved from a solute carrier transporter. MTCH2 uses membrane-embedded hydrophilic residues to function as a gatekeeper for the outer membrane, controlling mislocalization of TAs into the endoplasmic reticulum and modulating the sensitivity of leukemia cells to apoptosis. Our identification of MTCH2 as an insertase provides a mechanistic explanation for the diverse phenotypes and disease states associated with MTCH2 dysfunction.
The essential roles of mitochondria in metabolism and signaling depend on a functionally and structurally diverse class of alpha-helical proteins embedded in the outer mitochondrial membrane. Guna
et al
. identified the mitochondrial outer membrane protein MTCH2 (mitochondrial carrier homolog 2) and found that it is both necessary and sufficient for the insertion of mitochondrial alpha-helical proteins. MTCH2 is the defining member of a broadly conserved class of insertases that exploit a diverged ancestral solute transporter fold to mediate membrane protein insertion. MTCH2’s role as a gatekeeper for outer mitochondrial membrane biogenesis rationalizes its pleotropic phenotypes and association with human disease. —SMH
Mitochondrial carrier homolog 2 mediates the insertion of diverse alpha-helical proteins into the mitochondrial outer membrane. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.add1856 |