Endothelial cell diversity: the many facets of the crystal

Endothelial cells (ECs) form the inner lining of blood vessels and play crucial roles in angiogenesis. While it has been known for a long time that there are considerable differences among ECs from lymphatic and blood vessels, as well as among arteries, veins and capillaries, the full repertoire of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FEBS journal 2024-08, Vol.291 (15), p.3287-3302
Hauptverfasser: Perez‐Gutierrez, Lorena, Li, Pin, Ferrara, Napoleone
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Endothelial cells (ECs) form the inner lining of blood vessels and play crucial roles in angiogenesis. While it has been known for a long time that there are considerable differences among ECs from lymphatic and blood vessels, as well as among arteries, veins and capillaries, the full repertoire of endothelial diversity is only beginning to be elucidated. It has become apparent that the role of ECs is not just limited to their exchange functions. Indeed, a multitude of organ‐specific functions, including release of growth factors, regulation of immune functions, have been linked to ECs. Recent years have seen a surge into the identification of spatiotemporal molecular and functional heterogeneity of ECs, supported by technologies such as single‐cell RNA sequencing (scRNA‐seq), lineage tracing and intersectional genetics. Together, these techniques have spurred the generation of epigenomic, transcriptomic and proteomic signatures of ECs. It is now clear that ECs across organs and in different vascular beds, but even within the same vessel, have unique molecular identities and employ specialized molecular mechanisms to fulfil highly specialized needs. Here, we focus on the molecular heterogeneity of the endothelium in different organs and pathological conditions. Endothelial cells form the inner lining of blood vessels and play crucial roles in angiogenesis. Recent years have seen a surge in the identification of spatiotemporal molecular and functional heterogeneity of ECs. In this review, we highlight many aspects of the diversity of ECs, such as their morphological heterogeneity, the paracrine release of growth factors or the molecular heterogeneity.
ISSN:1742-464X
1742-4658
1742-4658
DOI:10.1111/febs.16660