Hierarchically Porous Ferroelectric Layer with the Aligned Dipole Moment for a High-Performance Aqueous Zn Metal Battery

Rechargeable aqueous Zn metal batteries (AZMBs) are desirable because of the advantages of metallic Zn and aqueous media. However, AZMBs suffer from limited cyclability and low Coulombic efficiency, originating from uncontrolled dendrite growth and side reactions such as hydrogen gas evolution and c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-11, Vol.14 (43), p.48570-48581
Hauptverfasser: Han, Ji Woo, Park, Bo Keun, Yang, So Yeon, Lee, Jimin, Mun, Junyoung, Choi, Jang Wook, Kim, Ki Jae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rechargeable aqueous Zn metal batteries (AZMBs) are desirable because of the advantages of metallic Zn and aqueous media. However, AZMBs suffer from limited cyclability and low Coulombic efficiency, originating from uncontrolled dendrite growth and side reactions such as hydrogen gas evolution and corrosion. A hierarchically porous poly­(vinylidene difluoride) (PVDF) protection layer with ferroelectric β-phases is formed on the Zn metal using a simple electrospinning method. This suppresses Zn metal failure modes such as side reactions and dendrite growth and supports rapid electrolyte accessibility. The synergetic effect of hierarchically porous structures and ferroelectricity not only facilitates a supporting matrix to form uniform nucleation sites for Zn deposition but also inhibits corrosion, allowing dendrite-free Zn deposition. This multifunctional PVDF film significantly improves the cyclability of Zn symmetric cells, allowing for up to 850 h of repeated plating/stripping cycles. Moreover, it exhibits an excellent cycle life of 1000 cycles under harsh conditions and high current densities of 4.0–10.0 mA cm–2, which are 62-fold higher than those that the bare Zn electrode tolerates.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.2c11172