Artificial Tactile Recognition Enabled by Flexible Low-Voltage Organic Transistors and Low-Power Synaptic Electronics

The advancement of self-powered intelligent strain systems for human–computer interaction is crucial toward wearable and energy-saving applications. Simultaneously, lowering operating voltage and thus reducing power consumption are of particular interests. A brain-like smart synaptic hardware system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-11, Vol.14 (43), p.48948-48959
Hauptverfasser: Wang, Xin, Lu, Wanlong, Wei, Peng, Qin, Zongze, Qiao, Nan, Qin, Xinsu, Zhang, Meng, Zhu, Yuanwei, Bu, Laju, Lu, Guanghao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The advancement of self-powered intelligent strain systems for human–computer interaction is crucial toward wearable and energy-saving applications. Simultaneously, lowering operating voltage and thus reducing power consumption are of particular interests. A brain-like smart synaptic hardware system is considered as a promising candidate for low-power, parallel computing and learning processes. However, the combination of low-voltage organic transistors and energy efficient smart synapse hardware systems driven by a tactile signal has been hindered by the limited materials and technology. Here, by employing an elastomeric copolymer poly­(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) with a high HFP content of 25 mol %, flexible, low-voltage transistors (|V G| ≤ 3 V) and a low energy consumption synapse ≤ 9.2 × 10–17 J are devised simultaneously, along with the lowest quality factor (R = P w × V G, 2.76 × 10–16 J V). Furthermore, based on the low voltage and low power consumption characteristics, flexible artificial tactile recognition system and Morse code recognition are established without any computing supporting. Mechanical flexibility, cycling stability, image contrast enhancement functions, and simulated pattern recognition accuracy of the multilayer perceptron neural network are also simulated. This work recommends a route of exploiting low voltage, low power consumption synaptic systems and smart human–machine interfaces with low energy loss based on flexible organic synaptic transistors.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.2c14625