3D biocomposite culture enhances differentiation of dopamine-like neurons from SH-SY5Y cells: A model for studying Parkinson's disease phenotypes

Studies of underlying neurodegenerative processes in Parkinson's Disease (PD) have traditionally utilized cell cultures grown on two-dimensional (2D) surfaces. Biomimetic three-dimensional (3D) cell culture platforms have been developed to better emulate features of the brain's natural mic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2022-11, Vol.290, p.121858, Article 121858
Hauptverfasser: Fiore, Nicholas J., Tamer-Mahoney, Jackson D., Beheshti, Afshin, Nieland, Thomas J.F., Kaplan, David L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Studies of underlying neurodegenerative processes in Parkinson's Disease (PD) have traditionally utilized cell cultures grown on two-dimensional (2D) surfaces. Biomimetic three-dimensional (3D) cell culture platforms have been developed to better emulate features of the brain's natural microenvironment. We here use our bioengineered brain-like tissue model, composed of a silk-hydrogel composite, to study the 3D microenvironment's contributions on the development and performance of dopaminergic-like neurons (DLNs). Compared with 2D culture, SH-SY5Y cells differentiated in 3D microenvironments were enriched for DLNs concomitant with a reduction in proliferative capacity during the neurodevelopmental process. Additionally, the 3D DLN cultures were more sensitive to oxidative stresses elicited by the PD-related neurotoxin 1-methyl-4-phenylpyridinium (MPP). MPP induced transcriptomic profile changes specific to 3D-differentiated DLN cultures, replicating the dysfunction of neuronal signaling pathways and mitochondrial dynamics implicated in PD. Overall, this physiologically-relevant 3D platform resembles a useful tool for studying dopamine neuron biology and interrogating molecular mechanisms underlying neurodegeneration in PD.
ISSN:0142-9612
1878-5905
1878-5905
DOI:10.1016/j.biomaterials.2022.121858