Efficient generation of a dual-polarized vortex wave with an ultrathin Huygens’ metasurface
In this paper, an ultrathin Huygens’ metasurface is designed for generating an orbital angular momentum (OAM) beam. The Huygens’ metasurface is a double-layered metallic structure on a single-layer PCB. Based on induced magnetism, the Huygens’ metasurface achieves the abilities of available near-com...
Gespeichert in:
Veröffentlicht in: | Optics express 2022-10, Vol.30 (21), p.39175-39187 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, an ultrathin Huygens’ metasurface is designed for generating an orbital angular momentum (OAM) beam. The Huygens’ metasurface is a double-layered metallic structure on a single-layer PCB. Based on induced magnetism, the Huygens’ metasurface achieves the abilities of available near-complete transmission phase shift around 28 GHz. According to the principle of vortex wave generation, a Huygens’ metasurface is designed, implemented and measured. The simulated and measured results show that the dual-polarized OAM transmitted waves with the mode
l
= 1 can be efficiently generated on a double-layered Huygens’ metasurface around 28 GHz. The measured peak gain is 23.4 dBi at 28 GHz, and the divergence angle is 3.5°. Compared with conventional configurations of OAM transmitted beam generation, this configuration has the advantages of high gain, narrow divergence angle, and low assembly cost. This investigation will provide a new perspective for engineering application of OAM beams. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.473127 |