Design and Synthesis of Phenyl Sulfide-Based Cationic Amphiphiles as Membrane-Targeting Antimicrobial Agents against Gram-Positive Pathogens

Due to the emergence of antimicrobial resistance and the lack of new antibacterial agents, it has become urgent to discover and develop new antibacterial agents against multidrug-resistant pathogens. Antimicrobial peptides (AMPs) serve as the first line of defense for the host. In this work, we have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2022-10, Vol.65 (20), p.14221-14236
Hauptverfasser: Liang, Wanxin, Yu, Qian, Zheng, Zixian, Liu, Jiayong, Cai, Qiongna, Liu, Shouping, Lin, Shuimu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to the emergence of antimicrobial resistance and the lack of new antibacterial agents, it has become urgent to discover and develop new antibacterial agents against multidrug-resistant pathogens. Antimicrobial peptides (AMPs) serve as the first line of defense for the host. In this work, we have designed, synthesized, and biologically evaluated a series of phenyl sulfide derivatives by biomimicking the structural features and biological functions of AMPs. Among these derivatives, the most promising compound 17 exhibited potent antibacterial activity against Gram-positive bacteria (minimum inhibitory concentrations = 0.39–1.56 μg/mL), low hemolytic activity (HC50 > 200 μg/mL), and high membrane selectivity. In addition, 17 can rapidly kill Gram-positive bacteria within 0.5 h through membrane-targeting action and avoid antibiotic resistance. More importantly, 17 showed high in vivo efficacy against Staphylococcus aureus in a murine corneal infection model. Therefore, 17 has great potential as a lead compound for the treatment of Gram-positive bacterial infections.
ISSN:0022-2623
1520-4804
DOI:10.1021/acs.jmedchem.2c01437