Release of bifidogenic N-glycans from native bovine colostrum proteins by an endo-β-N-acetylglucosaminidase
Milk glycoproteins play various biological roles including antibacterial, antiviral activities, modulating immune responses in living organisms. Released N-glycans from milk glycoproteins act as growth substrates for infant-associated bifidobacteria, which are key members of the breastfed infant’s g...
Gespeichert in:
Veröffentlicht in: | Enzyme and microbial technology 2023-01, Vol.162, p.110138-110138, Article 110138 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Milk glycoproteins play various biological roles including antibacterial, antiviral activities, modulating immune responses in living organisms. Released N-glycans from milk glycoproteins act as growth substrates for infant-associated bifidobacteria, which are key members of the breastfed infant’s gut. To date, the mechanisms, and contributions of glycans to the biological activities of glycoproteins remain to be elucidated. Only by testing both the released glycans and the deglycosylated protein in their native (i.e., non-denatured) form, can the individual contribution to the biological activity of glycoproteins be elucidated. However, for conventional enzymatic and chemical deglycosylation strategies to work efficiently, glycoprotein denaturation is required, which alters the protein native shape, hindering further investigations of its biological roles. An endo-β-N-acetylglucosaminidase (EndoBI-1) from Bifidobacterium longum subsp. infantis ATCC 15697 (B. infantis) was characterized as having the ability to release N-glycans from bovine milk glycoproteins efficiently, without the denaturation. In this study, the activity of EndoBI-1 was compared to a commercial enzyme to release N-glycans, the peptide-N-glycosidase F (PNGase F), using dairy glycoproteins as the substrate. The kinetic evaluation showed that EndoBI-1 displayed higher activity on native glycoproteins than PNGase F, with 0.036 mg/mL×min and 0.012 mg/mL×min glycan release, respectively. EndoBI-1 released a broader array of glycan structures compared to PNGase F from native glycoproteins. Thirty-two and fifteen distinct compositions were released from the native glycoproteins by EndoBI-1 and PNGase F, respectively, as characterized by advanced mass spectrometry. EndoBI-1 can be considered a promising enzyme for the release of N-glycans and their protein backbone in the native form, which will enable effective glycan release and will facilitate subsequent investigations to reveal their contribution to glycoproteins’ biological roles.
•Glycosylation of mammalian milk proteins is an important modification of proteins.•N-glycans act as prebiotic sources by selectively stimulating the growth of Bifidobacteria.•EndoBI-1 holds great potential to release N-glycans without damaging the native protein structure.•Isolation of glycans in the native form is important for the food industry to transform food streams into functional ingredients. |
---|---|
ISSN: | 0141-0229 1879-0909 |
DOI: | 10.1016/j.enzmictec.2022.110138 |