Complete mitochondrial genomes of Thyreophagus entomophagus and Acarus siro (Sarcoptiformes: Astigmatina) provide insight into mitogenome features, evolution, and phylogeny among Acaroidea mites
Mites from the Acaroidea (Sarcoptiformes: Astigmatina) are important pests of various stored products, posing potential threats to preserved foods. In addition, mites can cause allergic diseases. Complete mitochondrial genomes (mitogenomes) are valuable resources for different research fields, inclu...
Gespeichert in:
Veröffentlicht in: | Experimental & applied acarology 2022-09, Vol.88 (1), p.57-74 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mites from the Acaroidea (Sarcoptiformes: Astigmatina) are important pests of various stored products, posing potential threats to preserved foods. In addition, mites can cause allergic diseases. Complete mitochondrial genomes (mitogenomes) are valuable resources for different research fields, including comparative genomics, molecular evolutionary analysis, and phylogenetic inference. We sequenced and annotated the complete mitogenomes of
Thyreophagus entomophagus
and
Acarus siro
. A comparative analysis was made between mitogenomic sequences from 10 species representing nine genera within Acaroidea. The mitogenomes of
T. entomophagus
and
A. siro
contained 37 genes, including 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), two ribosomal RNAs (rRNAs), and one control region. In Acaroidea species, mitogenomes have highly conserved gene size and order, and codon usage. Among Acaroidea mites, most PCGs were found to be under purifying selection, implying that most PCGs might have evolved slowly. Our findings showed that
nad4
evolved most rapidly, whereas
cox1
and
cox3
evolved most slowly. The evolutionary rates of Acaroidea vary considerably across families. In addition, selection analyses were also performed in 23 astigmatid mite species, and the evolutionary rate of the same genes in different superfamilies exhibited large differences. Phylogenetic results are mostly consistent with those identified by previous phylogenetic studies on astigmatid mites. The monophyly of Acaroidea was rejected, and the Suidasiidae and Lardoglyphidae appeared to deviate from the Acaroidea branch. Our research proposed a review of the current Acaroidea classification system. |
---|---|
ISSN: | 0168-8162 1572-9702 |
DOI: | 10.1007/s10493-022-00745-4 |