All-fiber high-power erbium-doped laser system generating optical pulses with a duration of 200 µs to 5 ms for fractional photo-rejuvenation

An all-fiber high-power erbium-doped fiber laser (EDFL) source generating optical pulses from 200 µs to 5 ms with a stable rectangular envelope for fractional photo-rejuvenation is proposed and experimentally demonstrated. A master oscillator power amplifier (MOPA) configuration composed of a master...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2022-06, Vol.61 (16), p.4851-4856
Hauptverfasser: Koptev, M. Yu, Morozov, A. N., Shatilova, K. V., Muravyev, S. V., Zapryalov, A. E., Likhachev, M. E., Kim, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An all-fiber high-power erbium-doped fiber laser (EDFL) source generating optical pulses from 200 µs to 5 ms with a stable rectangular envelope for fractional photo-rejuvenation is proposed and experimentally demonstrated. A master oscillator power amplifier (MOPA) configuration composed of a master oscillator, an acousto-optic modulator (AOM), and a one-stage amplifier is designed and employed in the EDFL to serve as an efficient laser system with excellent output performance. To avoid multistage amplifiers, the master oscillator generates 1.5 W, and a Yb-free Er-doped large-mode-area (LMA) active fiber is used for a one-stage power amplifier. There are two benefits to this approach: first, modulation of both pump and seed pulses is used to achieve clear rectangular shaped pulses without amplified spontaneous emission (ASE) growth; and second, there are no power limitations in the amplifier and undesirable 1 µm ASE compared to Er/Yb systems. We have reached 28.6 W of peak power with 26% slope efficiency limited only by available pump power, so the system can be easily scaled for achieving a higher peak power.
ISSN:1559-128X
2155-3165
1539-4522
DOI:10.1364/AO.455761