Broadband tunable coding metasurfaces based on a metal patch and graphene for beam control at the terahertz frequencies
We present a broadband tunable coding metasurfaces structure using a cruciate metal patch and circular graphene on a multilayer substrate. By changing the Fermi level of the graphene, we can achieve obvious reflection phase variation to design multi-bit coding metasurfaces. In the research of 1-bit...
Gespeichert in:
Veröffentlicht in: | Applied optics (2004) 2022-06, Vol.61 (17), p.5152-5160 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a broadband tunable coding metasurfaces structure using a cruciate metal patch and circular graphene on a multilayer substrate. By changing the Fermi level of the graphene, we can achieve obvious reflection phase variation to design multi-bit coding metasurfaces. In the research of 1-bit coding metasurfaces, we combine the advantages of graphene and copper to realize the real-time adjustment of the reflected waves in four broadband frequency bands. In this case, we can control the number of far-field reflected waves in the frequency range of 5.45–6.45 THz. Then, we create 2-bit and 3-bit coding modes on the basis of 1-bit coding metasurfaces to obtain a single beam of reflected waves. Finally, we use the convolution calculation to realize the real-time adjustment of the single beam reflection direction from 0° to 360° in the azimuthal plane. Research of the 2-bit and 3-bit coding modes also provides a way to control the number and direction of the reflected beam, specifically in the 1-bit coding mode. The present coding metasurfaces structure provides inspiration for the design of functional devices in future-oriented intelligent communication. |
---|---|
ISSN: | 1559-128X 2155-3165 1539-4522 |
DOI: | 10.1364/AO.459343 |