Broadband tunable coding metasurfaces based on a metal patch and graphene for beam control at the terahertz frequencies

We present a broadband tunable coding metasurfaces structure using a cruciate metal patch and circular graphene on a multilayer substrate. By changing the Fermi level of the graphene, we can achieve obvious reflection phase variation to design multi-bit coding metasurfaces. In the research of 1-bit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2022-06, Vol.61 (17), p.5152-5160
Hauptverfasser: Ge, Panpeng, Zhang, Ying, Xiao, Lihua, Xiao, Binggang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a broadband tunable coding metasurfaces structure using a cruciate metal patch and circular graphene on a multilayer substrate. By changing the Fermi level of the graphene, we can achieve obvious reflection phase variation to design multi-bit coding metasurfaces. In the research of 1-bit coding metasurfaces, we combine the advantages of graphene and copper to realize the real-time adjustment of the reflected waves in four broadband frequency bands. In this case, we can control the number of far-field reflected waves in the frequency range of 5.45–6.45 THz. Then, we create 2-bit and 3-bit coding modes on the basis of 1-bit coding metasurfaces to obtain a single beam of reflected waves. Finally, we use the convolution calculation to realize the real-time adjustment of the single beam reflection direction from 0° to 360° in the azimuthal plane. Research of the 2-bit and 3-bit coding modes also provides a way to control the number and direction of the reflected beam, specifically in the 1-bit coding mode. The present coding metasurfaces structure provides inspiration for the design of functional devices in future-oriented intelligent communication.
ISSN:1559-128X
2155-3165
1539-4522
DOI:10.1364/AO.459343