Carbon-induced corrosion of nickel anode

In high-temperature solid oxide fuel cells where natural gas is used as a fuel, high-carbon-activity environments can be encountered in the anode compartment. Under these conditions, nickel could corrode by a process known as metal dusting. In the present study, metal dusting corrosion of pure nicke...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2000-10, Vol.147 (10), p.3680-3686
Hauptverfasser: CHUN, C. M, MUMFORD, J. D, RAMANARAYANAN, T. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In high-temperature solid oxide fuel cells where natural gas is used as a fuel, high-carbon-activity environments can be encountered in the anode compartment. Under these conditions, nickel could corrode by a process known as metal dusting. In the present study, metal dusting corrosion of pure nickel is simulated in high-carbon-activity environments at temperatures between 350 and 1050 deg C. The focus of this research is to understand reaction mechanisms by characterizing interfacial processes at the nanometer level. Nickel corrodes by a combination of carbon diffusion and precipitation in the bulk metal and atom migration through surface carbon deposits. The nature of the carbon deposit is important in the overall corrosion process. At lower temperatures closer to about 350 deg C, nickel forms a carbide. Ni sub 3 C, which is rather stable and does not decompose.
ISSN:0013-4651
1945-7111
DOI:10.1149/1.1393958