Twisted Gaussian Schell-model breathers and solitons in strongly nonlocal nonlinear media

Based on the Snyder-Mitchell linear model and the cross-spectral density (CSD) function, the analytical propagation formula of twisted Gaussian Schell-model (TGSM) beams in strongly nonlocal nonlinear medium (SNNM) is derived. Then the propagation characteristics of TGSM beam are studied. It is foun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2022-08, Vol.30 (18), p.32019-32030
Hauptverfasser: Zhang, Shaohua, Zhou, Zhenglan, Zhou, Yuan, Xu, Huafeng, Yuan, Yangsheng, Han, Yashuai, Zhou, Zhengxian, Yao, Baoli, Qu, Jun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Based on the Snyder-Mitchell linear model and the cross-spectral density (CSD) function, the analytical propagation formula of twisted Gaussian Schell-model (TGSM) beams in strongly nonlocal nonlinear medium (SNNM) is derived. Then the propagation characteristics of TGSM beam are studied. It is found that the soliton radius is jointly determined by the initial power, coherence length, and twist factor; the degree of spatial coherence is adjusted by changing the twist factor without affecting the soliton intensity. In the case of non-soliton properties, there is a threshold of coherence length which makes partially coherent beams have the same evolution law as completely coherent beams. Furthermore, increasing the twist factor, decreasing the coherence length and initial power can improve the beam quality of the beam propagating in SNNM.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.466117