Vanadium dioxide-assisted switchable multifunctional metamaterial structure

A multifunctional design based on vanadium dioxide (VO 2 ) metamaterial structure is proposed. Broadband absorption, linear-to-linear (LTL) polarization conversion, linear-to-circular (LTC) polarization conversion, and total reflection can be achieved based on the insulator-to-metal transition (IMT)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2022-07, Vol.30 (15), p.26544-26556
Hauptverfasser: Qiu, Yu, Yan, De-Xian, Feng, Qin-Yin, Li, Xiang-Jun, Zhang, Le, Qiu, Guo-Hua, Li, Ji-Ning
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A multifunctional design based on vanadium dioxide (VO 2 ) metamaterial structure is proposed. Broadband absorption, linear-to-linear (LTL) polarization conversion, linear-to-circular (LTC) polarization conversion, and total reflection can be achieved based on the insulator-to-metal transition (IMT) of VO 2 . When the VO 2 is in the metallic state, the multifunctional structure can be used as a broadband absorber. The results show that the absorption rate exceeds 90% in the frequency band of 2.17 - 4.94 THz, and the bandwidth ratio is 77.8%. When VO 2 is in the insulator state, for the incident terahertz waves with a polarization angle of 45°, the structure works as a polarization converter. In this case, LTC polarization conversion can be obtained in the frequency band of 0.1 - 3.5 THz, and LTL polarization conversion also can be obtained in the frequency band of 3.5 - 6 THz, especially in the 3.755 - 4.856 THz band that the polarization conversion rate is over 90%. For the incident terahertz waves with a polarization angle of 0°, the metamaterial structure can be used as a total reflector. Additionally, impacts of geometrical parameters, incidence angle and polarization angle on the operating characteristics have also been investigated. The designed switchable multifunctional metasurfaces are promising for a wide range of applications in advanced terahertz research and smart applications.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.465062