Ultrasensitive cascaded in-line Fabry-Perot refractometers based on a C-shaped fiber and the Vernier effect

We propose and experimentally demonstrate a fiber refractometer based on a C-shaped fiber and the Vernier effect. The sensor is fabricated by cascading a single mode fiber (SMF) pigtail together with a C-shaped fiber segment and another SMF segment. Thus, the C-shaped fiber would constitute an open...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2022-07, Vol.30 (15), p.27704-27714
Hauptverfasser: Qiu, Haiming, Jiang, Junfang, Yao, Lili, Dai, Zhengping, Liu, Zhengyong, Qu, Hang, Hu, Xuehao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose and experimentally demonstrate a fiber refractometer based on a C-shaped fiber and the Vernier effect. The sensor is fabricated by cascading a single mode fiber (SMF) pigtail together with a C-shaped fiber segment and another SMF segment. Thus, the C-shaped fiber would constitute an open cavity (sensing cavity) in which test analytes could be filled, while the SMF segment would constitute another reference cavity. Due to the similar optical path length of these two cavities, the Vernier effect would be activated, thus forming spectral envelops in the reflection spectrum of the sensor. Variations in the refractive index (RI) of analytes would result in the shifts of the spectral envelops. Both theoretical calculations and experiments are carried out in the characterization of the sensor measuring liquid and gaseous analytes. The experimental sensitivity of the sensor is found to be ∼37238 nm/RIU for gas RI measurement. The proposed sensor features the advantages such as ease of fabrication, extremely high sensitivity, capability of sensing of both gaseous and liquid analytes, small footprint, and good mechanical strength. Compared to other existing Vernier effect-based fiber refractometers typically fabricated using PCFs, the proposed sensor would allow analytes to have much easier and quicker access to the sensor probe.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.463335