Rice husk waste into various template-engineered mesoporous silica materials for different applications: A comprehensive review on recent developments
Following the discovery of Stöber silica, the realm of morphology-controlled mesoporous silica nanomaterials like MCM-41, SBA-15, and KCC-1 has been expanded. Due to their high BET surface area, tunable pores, easiness of functionalization, and excellent thermal and chemical stability, these materia...
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2023-01, Vol.310, p.136843-136843, Article 136843 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Following the discovery of Stöber silica, the realm of morphology-controlled mesoporous silica nanomaterials like MCM-41, SBA-15, and KCC-1 has been expanded. Due to their high BET surface area, tunable pores, easiness of functionalization, and excellent thermal and chemical stability, these materials take part a vital role in the advancement of techniques and technologies for tackling the world's largest challenges in the area of water and the environment, energy storage, and biotechnology. Synthesizing these materials with excellent physicochemical properties from cost-efficient biomass wastes is a foremost model of sustainability. Particularly, SiO2 with a purity >98% can be obtained from rice husk (RH), one of the most abundant biomass wastes, and can be template engineered into various forms of mesoporous silica materials in an economic and eco-friendly way. Hence, this review initially gives insight into why to valorize RH into value-added silica materials. Then the thermal, chemical, hydrothermal, and biological methods of high-quality silica extraction from RH and the principles of synthesis of mesoporous and fibrous mesoporous silica materials like SBA-15, MCM-41, MSNs, and KCC-1 are comprehensively discussed. The potential applications of rice husk-derived mesoporous silica materials in catalysis, drug delivery, energy, adsorption, and environmental remediation are explored. Finally, the conclusion and the future outlook are briefly highlighted.
[Display omitted]
•Rice husk ash has a direct deleterious impact on human and environmental health.•Rice husk ash comprises a substantial amount of extractable and processable silica.•Chemical-based extraction is the best route to get morphology-controlled silica.•Template-engineered mesoporous silica materials can be synthesized from rice husk.•Potential uses of mesoporous silica derived from rice husk are also reviewed. |
---|---|
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2022.136843 |