USP7 targets XIAP for cancer progression: Establishment of a p53-independent therapeutic avenue for glioma
Ubiquitin specific peptidase 7 (USP7) is a deubiquitinating enzyme (DUB) that removes ubiquitin tags from specific target protein substrates in order to alter their degradation rate, sub-cellular localization, interaction, and activity. The induction of apoptosis upon USP7 inhibition is well establi...
Gespeichert in:
Veröffentlicht in: | Oncogene 2022-11, Vol.41 (47), p.5061-5075 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ubiquitin specific peptidase 7 (USP7) is a deubiquitinating enzyme (DUB) that removes ubiquitin tags from specific target protein substrates in order to alter their degradation rate, sub-cellular localization, interaction, and activity. The induction of apoptosis upon USP7 inhibition is well established in cancer containing wild type p53, which operates through the ‘USP7-Mdm2-p53’ axis. However, in cancers without functional p53, USP7-dependent apoptosis is induced through many other alternative pathways. Here, we have identified another critical p53 independent path active under USP7 to regulate apoptosis. Proteomics analysis identifies XIAP as a potential target of USP7-dependent deubiquitination. GSEA analysis revealed up-regulation of apoptosis signalling upon USP7 inhibition associated with XIAP down-regulation. Modulation of USP7 expression and activity in multiple cancer cell lines showed that USP7 deubiquitinates XIAP to inhibit apoptosis in a caspase-dependent pathway, and the combinatorial inhibition of USP7 and XIAP induces apoptosis in vitro and in vivo. Immunohistochemical staining revealed that grade-wise accumulation of USP7 correlated with an elevated level of XIAP in glioma tissue. This is the first report on the identification and validation of XIAP as a novel substrate of USP7 and together, they involve in the empowerment of the tumorigenic potential of cancer cells by inhibiting apoptosis. |
---|---|
ISSN: | 0950-9232 1476-5594 |
DOI: | 10.1038/s41388-022-02486-5 |