Characterization of PT-symmetric quantum interference based on the coupled mode theory
In this paper, we propose a comprehensive quantum theoretical framework to formulate the quantum interference inside the parity-time (PT) symmetric waveguide system which is formed by two coupled optical waveguides with unequal losses. Based on the theory, the expression for the well-known Hong-Ou-M...
Gespeichert in:
Veröffentlicht in: | Optics express 2022-06, Vol.30 (13), p.23600-23607 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose a comprehensive quantum theoretical framework to formulate the quantum interference inside the parity-time (PT) symmetric waveguide system which is formed by two coupled optical waveguides with unequal losses. Based on the theory, the expression for the well-known Hong-Ou-Mandel (HOM) dip is derived, which is in an exact agreement with the published results. What’s more, a novel one-photon quantum interference phenomenon is predicted according to the model, which suggests a quantum interference process similar to the HOM effect can be observed for the one-photon state, while the other photon is lost due to the waveguide attenuation. Such phenomenon cannot occur in a Hermitian system or in the system formed by the waveguides with equal losses. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.458881 |